K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

Nhẩm nghiệm, thấy x=-1 thỉ P=0, phân tích đa thức dần thành nhân tử

P(x)=\(\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)

=\(2x^{^{ }4}+2x^3-9x^3-9x^2+7x^2+7x+6x+6\)

=\(\left(x+1\right)\left(x-2\right)\left(2x^2-5x-3\right)\)

=\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-1\right)\)

Đây là 1 tích trong đó có 3 số nguyên lien tiep.

Trong 3 so nguyen lien tiep co it nhat 1 so chan va 1 so chia het cho 3

=> h cua chung chia het cho 2x3=6.

Vay P chia het cho 6.

20 tháng 2 2017

                                                                                                                                                                                                    bạn ơi h là j thế 

10 tháng 4 2022

tham khảo

Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :

P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .

Ta có :

P ( 0 ) chia hết cho 5

⇒ a . 02+ b . 0 + c chia hết cho 5

⇒ c chia hết cho 5

P ( 1 ) chia hết cho 5

⇒ a . 12 + b . 1 + c chia hết cho 5

⇒ a + b + c chia hết cho 5

Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )

P ( - 1 ) chia hết cho 5

⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5

⇒ a + b + c chia hết cho 5

Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5

⇒ 2a chia hết cho 5

Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5

Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5

Vậy a , b , c chia hết cho 5 . ( đpcm )

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z  thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

4 tháng 11 2017

mình tưởng thuật toán Horner chỉ để tìm số dư thôi chứ

4 tháng 11 2017

Tìm dư có 2 cách là dùng Horner hoặc là bezout nha

Nhưng chia thì dùng Horner được : Giảm biến ở trong bảng đó

20 tháng 2 2020

P(x)=x^3-a^2.x+2016.b

Do 2016b chia hết cho 3 với mọi số nguyên b,ta chỉ cần xét x^3-a^2.x

có:x^3-a^2.x=x(x^2-a^2)=x(x+a)(x-a)

+nếu x chia hết cho 3=>P(x) chia hết cho 3

+nếu x và a chia 3 có cùng số dư=>(x-a)chia hết cho 3=>p(x) chia hết cho 3

+nếu x và a có số dư khác nhau khi chia hết cho 3(1 và 2)=>(x+a) chia hết cho 3=>P(x) chia hết cho 3

=>ĐPCM

21 tháng 2 2020

mik bt làm r

14 tháng 8 2020

Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)

Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)

Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)

\(\Leftrightarrow2a+b+4c+d⋮7\)

\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)

\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)

Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.

24 tháng 2 2018

p(x)= x^4 +2x^3 - 13x^2 - 14x+24
<=> p(x)= x^4 - x^3 + 3x^3 - 3x^3 - 10x^2 + 10x - 24x + 24
<=> p(x)= x^3(x - 1) + 3x^2(x - 1) - 10x(x - 1) - 24(x - 1)
<=> p(x)= (x^3 + 3x^2 - 10x - 24)(x - 1)
<=> p(x)= (x^3 - 3x^2 + 6x^2 - 18x + 8x - 24)(x - 1)
<=> p(x)= [x^2(x - 3) + 6x(x - 3) + 8(x - 3)](x - 1)
<=> p(x)= (x^2+ 6x + 8)(x - 3)(x - 1)
<=> p(x)= (x - 3)(x - 1)(x + 2)(x + 4)
một số chia hết cho 6 khi và chỉ khi nó đồng thời chia hết cho 2 và 3
* Giả sử (x - 3) và (x - 1) là số lẻ thì (x + 2) và (x + 4) là những số chẵn => hiển nhiên p(x) chia hết cho 2
xét tương tự với trường hợp ngược lại
* Nếu (x - 3) không chia hết cho 3 thì (x - 1) chia hết cho 3 hoặc (x + 4) chia hết cho 3
Nếu (x - 1) không chia hết cho 3 thì (x - 3) chia hết cho 3 hoặc (x + 4) chia hết cho 3
Hai trường hợp còn lại tương tự

24 tháng 9 2021

sai rồi nha