Cho hàm số f(x)=\(\dfrac{x+m}{x+1}\)( m là tham số thực) gọi S là tập hợp tất cả các giá trị của m sao cho \(\min\limits_{\left[0;1\right]}\left|f\left(x\right)\right|+\max\limits_{\left[0;1\right]}\left|f\left(x\right)\right|=2\). Số phần tử của A là
A.6
B.2
C.1
D.4
Bạn tham khảo ạ!
Cho hàm số f(x) = \(\dfrac{x+m}{x+1}\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của tham số m sao cho \(... - Hoc24
Còn nếu chưa hiểu cách làm thì bạn có thể hỏi anh Lâm hoặc chính người làm bài này :)
Lời giải:
Nếu $m=1$ thì hàm $f(x)=1$ là hàm hằng thì không có cực trị.
Nếu $m\neq 1$;
$f'(x)=\frac{1-m}{(x+1)^2}$. $m>1$ thì hàm nghịch biến trên $[0;1]$, mà $m< 1$ thì hàm số đồng biến trên $[0;1]$
Từ đó suy ra hàm số đạt cực trị tại biên, tức là $(f_{\min}, f_{\max})=(f(1),f(0))=(m, \frac{m+1}{2})$ và hoán vị.
Giờ ta đi giải PT:
$|m|+|\frac{m+1}{2}|=2$
Dễ dàng giải ra $m=1$ hoặc $m=\frac{-5}{3}$
Do đó đáp án là B.