K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

k nhak

21 tháng 9 2016

a ) \(5\frac{3}{4}:3+2\frac{1}{4}.\frac{1}{3}-\frac{3}{8}=\frac{23}{4}:\frac{3}{1}+\frac{9}{4}.\frac{1}{3}=\frac{23}{12}+\frac{3}{4}=\frac{8}{3}\)

b ) \(\frac{3}{5}:\frac{5}{6}:\frac{6}{7}:\frac{7}{8}+\frac{7}{8}+\frac{2}{5}+\frac{23}{35}=\frac{3.6.7.8}{5.5.6.7}+\frac{7}{8}+\frac{2}{5}+\frac{23}{35}=\frac{24}{25}+\frac{7}{8}+\frac{2}{5}+\frac{23}{35}=\frac{4049}{1400}\)

21 tháng 9 2016

a) =  \(\frac{23}{4}:3+\frac{9}{4}x\frac{1}{3}-\frac{3}{8}\)

= ....

(bn tự giải nhé, mk đã làm thành phân số cho bn r`)

b) tương tự như câu a nhé

nha bn

4 tháng 4 2016

=58/7-(40/9+30/7)

=58/7-40/9-30/7

=(58/7-30/7)-40/9

==...................

k nha bn

20 tháng 4 2017

\(\frac{1}{12}\)

tk mk nha 

20 tháng 4 2017

=1/6*1/2=1/12

20 tháng 9 2016

a)\(\frac{2}{3}+\frac{3}{4}+\frac{1}{6}=\frac{19}{12}\); b)\(2\frac{1}{10}-\frac{3}{4}-\frac{2}{5}=\frac{3}{4}\)c)\(\frac{1}{3}-\frac{1}{5}=\frac{2}{15}\)d) \(\frac{1}{5}-\frac{1}{7}=\frac{2}{35}\)

26 tháng 3 2016

Đặt \(S=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(\Rightarrow7^2S=1-\frac{1}{7^2}+\frac{1}{7^4}-\frac{1}{7^6}+....+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(\Rightarrow49S=1-S-\frac{1}{7^{100}}\)

\(\Rightarrow49S+S=1-S-\frac{1}{7^{100}}+S\)

\(\Rightarrow50S=1-\frac{1}{7^{100}}<1\Rightarrow50S<1\Rightarrow S<\frac{1}{50}\left(đpcm\right)\)


 

26 tháng 3 2016

minh moi hoc lop 4 nen ko bik lam thong cam nha ban

15 tháng 8 2015

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

A < \(1-\frac{1}{100}\)<\(1\)

=> A < 1 (đpcm)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)