Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1.2.3.4...9-1.2.3.4...8-1.2.3.4...8.8
=1.2.3.4...8(9-1-8)
=1.2.3.4...8.0
=0
b)(3.4.216)2/11.123.411-169=(3.22.216)2/11.213.222-236=32.24.232/11.235-236=32.226/235.(11-2)
=32.236/235.9=32.236/235.32=2
c)70.(131313/565656+131313/727272+131313/909090
=70.(13/56+13/72+13/90)
=70.39/70=39
d)1/4.9+1/9.14+1/14.19+...+1/64.69
=4/4.9.4+4/9.4.14+4/14.19.4+...+4/64.69.4.
=1/4.(4/4.9+4/9.14+4/14.19+...+4/64.69)
=1/4.(1/4-1/9+1/9-1/14+1/14-1/19+...+1/64-1/69)
=1/4.(1/4-1/69)
=1/4.65/276=65/1104
~~~~~~~~Chúc bạn học giỏi nhé !~~~~~~~~
a, \(\frac{4x}{3}=\frac{14x}{3}+5\)
\(\frac{4x}{3}-\frac{14x}{3}=5\)
\(\frac{-10x}{3}=5\)
x=-1,5
b, 3x-5x=2-4
-2x=-2
x=1
c, \(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\) .x=2
\(\left(\frac{1}{1}-\frac{1}{12}\right).x=2\)
\(\frac{11}{12}.x=2\)
x=\(\frac{24}{11}\)
d, \(x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{101.103}\right)\)
\(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)
x=\(\frac{1}{2}\left(1-\frac{1}{103}\right)\)
x=\(\frac{1}{2}.\frac{102}{103}\)
x=\(\frac{51}{103}\)
Câu 1 :
\(x:\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{101.103}\right)=1\)
\(=>x:\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\right]\) \(=1\)
\(=>x:\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{103}\right)\right]=1\)
\(=>\) \(x:\frac{51}{103}=1\)
\(=>x=1.\frac{51}{103}=\frac{51}{103}\)
Câu 2 :
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\right).x=2\)
\(=>\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right).x=2\)
\(=>\left(\frac{1}{1}-\frac{1}{12}\right).x=2\)
\(=>\frac{11}{12}.x=2\)
\(=>x=2:\frac{11}{12}\)
\(=>x=\frac{24}{11}\)
Ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005
Đặt A = 1 + 2 + 22 + 23 + ....... + 22004
=> 2A = 2 + 22 + 23 + ....... + 22005
=> 2A - A = 22005 - 1
=> A = 22005 - 1
Thay vào ta có : D = (1 + 2 + 22 + 23 + ....... + 22004) - 22005
=> D = 22005 - 1 - 22005
=> D = -1
\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)
\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)
\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)
\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)
\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)
Đến đây là tính dễ rồi :v
\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)
\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)
Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)
\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)
\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)
\(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)
\(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)
\(=100.\frac{2}{101}\)\(=\frac{200}{101}\)
\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)
\(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)
\(=\frac{1}{1994}\) (Giản ước còn lại như này)
a,\(A=1993^{1^{2\times3\times4\times...\times1994}}=1993^1=1993\)
b,\(B=1994^{\left(225-1^2\right)\times\left(225-2^2\right).....\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-15^2\right)...\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\left(225-225\right)...\left(225-50^2\right)}\)
\(=1994^{\left(225-1^2\right)\times\left(225-2^2\right)...\times0\times...\left(225-50^2\right)}\)
\(=1994^0=1\)
c, \(C=\frac{2^{10}\times3^{31}+2^{40}\times3^6}{2^{11}\times3^{31}+2^{41}\times3^6}\)
\(=\frac{2^{10}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}{2^{11}\times3^6\times\left(1\times3^{25}+2^{30}\times1\right)}\)
\(=\frac{2^{10}}{2^{11}}=\frac{1}{2}\)
a)2A=1+1/2^1+1/2^2+...+1/2^98
2A-A=1+1/2^1+1/2^2+...+1/2^98-(1/2^1+1/2^2+...+1/2^99)
A=1+1/2^1+1/2^2+...+1/2^98-1/2^1-1/2^2-...-1/2^99
A=1-1/2^99
= \(\frac{1}{12}\)
tk mk nha
=1/6*1/2=1/12