chứng minh rằng với p là số nguyên tố lớn hơn 3 ta có 2p-1 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ là đề bài thế này : Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P-1).(P+1) chia hết cho 24
BÀI GIẢI
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 và 3
Ta có : P không chia hết cho 2
=> P - 1 và P + 1 là 2 số chẵn liên tiếp => ( P - 1 )( P + 1 ) chia hết cho 8 ( 1 )'
Mặt khác : P không chia hết cho 3
Nếu P = 3k + 1 thì P - 1 chia hết cho 3k => ( P - 1 )( P + 1 ) chia hết cho 3 ( 2 )
Từ ( 1 ) và ( 2 ) => ( P - 1 )( P + 1 ) chia hết cho 8 và chia hết cho 3 mà ( 8 ; 3 ) = 1 => ( P - 1 )( P + 1 ) chia hết cho 24.
Sửa lại đề bài :
Cho p là số nguyên tố lớn hơn 3. Biết 2p + 1 cũng là số nguyên tố.
Chứng minh rằng: p + 1 chia hết cho 6.
Bài Giải
Ta chứng minh p + 1 ⋮2,3
- Vì p là số nguyên tố lớn hơn 3
=> p + 1 = 2k + 1 => p + 1 = 2k + 1 + 1 = 2k + 2 = 2 ( k + 1)
Mà : k + 1 ∈ N => 2 ( k + 1 ) ⋮2 (1)
- Vì p là số nguyên tố lớn hơn 3
=> p = 3k + 1 hoặc p = 3k + 2
+ Trường hợp 1 : p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 )
Mà : k + 1 ∈ N ; p > 3 => k ≥ 1 => 3 ( k + 1 ) là hợp số
=> p + 2 là hợp số ( vô lý )
=> p = 3k + 2 => p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 )
Mà : k + 1 ∈ N => 3 ( k + 1 ) ⋮3 hay p + 1 ⋮3 (2)
Từ (1) và (2) => p + 1 ⋮6 (đpcm)
1)
+) a, b, c là các số nguyên tố lớn hơn 3
=> a, b, c sẽ có dạng 3k+1 hoặc 3k+2
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3
=> (a-b)(b-c)(c-a) chia hết cho 3 (1)
+) a,b,c là các số nguyên tố lớn hơn 3
=> a, b, c là các số lẻ và không chia hết cho 4
=> a,b, c sẽ có dang: 4k+1; 4k+3
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4
th1: Cả 3 số chia hết cho 4
=> (a-b)(b-c)(c-a) chia hết cho 64 (2)
Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192 vì (64;3)=1
=> (a-b)(b-c)(c-a) chia hết cho 48
th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 32 (3)
Từ (1) , (3)
=> (a-b)(b-c)(c-a) chia hết cho 32.3=96 ( vì (3;32)=1)
=> (a-b)(b-c)(c-a) chia hết cho 48
Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 16
Vì (16; 3)=1
=> (a-b)(b-c)(c-a) chia hết cho 16.3=48
Như vậy với a,b,c là số nguyên tố lớn hơn 3
thì (a-b)(b-c)(c-a) chia hết cho 48
Ta có: A = n2 - 1 = (n - 1)(n + 1)
Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)
Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)
- Nếu n = 3k + 1 thì:
A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3
- Nếu n = 3k + 2 thì:
A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3
Từ hai trường hợp trên ta có A \(⋮\) 3 (2)
Mà (8,3) = 1 (3)
Từ (1),(2),(3) => \(A⋮24\)
2p - 1 = ( p - 1 ) . ( p + 1 )
p là số nguyên tố lớn hơn 3 => p không chia hết cho 2 ; 3
Ta có : p không chia hết cho 2
=> p - 1 và p + 1 là hai số chẵn liên tiếp => ( p - 1 ) . ( p + 1 ) chia hết cho 8 ( 1 )
Lại mặt khác ta có : p không chia hết cho 3
Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3
Tương tự ta có : Nếu p = 3k + 2 thì p + 1 = 3k + 3 chia hết cho 3 => ( p - 1 ) . ( p + 1 ) chia hết cho 3 (2)
Từ ( 1 ) và ( 2 ) => 2p - 1 chia hết cho 8 cho 3 mà ( 8; 3 ) = 1 => 2p - 1 chia hết cho .............
l-i-k-e nah