K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

Ta có: (a+b)3=a3+b3+3ab.(a+b)=2013+3ab.(a+b) chia hết cho 3

Do đó: (a+b)3 chi hết cho 3 


=> (a + b) chia hết cho 3 

=> (a+b)3 chia hết cho 27.


Ta có: 3ab.(a+b) chia hết cho 9 

 2013 = (a+b)3−3ab.(a+b) chia hết cho 9: vô lý vì 2013 chia 9 dư 6

 Vậy không tồn tại hay hai số nguyên dương a và b thỏa mãn đề bài

5 tháng 9 2016

thằng trẻ trâu

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:
$a^3+b^3=(a+b)^3-3ab(a+b)=2013$

$\Rightarrow (a+b)^3=3ab(a+b)+2013\vdots 3$

$\Rightarrow a+b\vdots 3$

$\Rightarrow (a+b)^3\vdots 27$ và $3ab(a+b)\vdots 9$

Do đó:

$2013=(a+b)^3-3ab(a+b)\vdots 9$ 

Điều này vô lý do $2013\not\vdots 9$

Vậy không tồn tại $a,b$ nguyên thỏa mãn đề.

22 tháng 7 2017

1) không tồn tại

2) không tồn tại

3) không tồn tại

18 tháng 1 2018

cmr (a-b)3chia hết cho 3 suy ra a-b chia hết cho 3 suy ra a-b tất cả mũ 3 chia hết cho 9 suy ra a3-b3 chia hết cho 9 vô lí vì 123123 ko chia hết cho 9