Cho tam giác ABC nhọn (AB > AC), nội tiếp đường tròn (O; R). Các tiếp tuyến tại B và C cắt nhau tại M. Gọi H là giao điểm của OM và BC. Từ m kẻ đường thẳng song song với AC, đường thẳng này cắt (O) tại E và F (E thuộc cung nhỏ BC), cắt BC tại I, cắt AB tại K
a) Chứng minh: MO vuông góc BC và ME.MF = MH.MO
b) Chứng minh rằng tứ giác MBKC là tứ giác nội tiếp. Từ đó suy ra 5 điểm M, B, K, O, C cùng thuộc một đường tròn
c) Đường thẳng OK cắt O tại N và P (N thuộc cung nhỏ AC). Đường thẳng PI cắt O tại Q (Q khác P). Chứng minh ba điểm M, N, Q thẳng hàng
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
15 tháng 6 2023
1: góc HEP+góc HKP=180 độ
=>HEPK nội tiếp
2: Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hbh
=>M là trung điểm của HD
Xét ΔAHD có DO/DA=DM/DH
nên OM/AH=DO/DA=1/2