Tính giá trị x,y thỏa mãn
/2x-27/^2017+(3y+27)^2017=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x-27\right|^{2017}+\left(3y+27\right)^{2016}=0\)
\(\Rightarrow\left|2x-27\right|^{2017}=0\) và \(\left(3y+27\right)^{2016}=0\)
+) \(\left|2x-27\right|^{2017}=0\Rightarrow2x-27=0\Rightarrow2x=27\Rightarrow x=\frac{27}{2}\)
+) \(\left(3y+27\right)^{2016}=0\Rightarrow3y+27=0\Rightarrow3y=-27\Rightarrow y=-9\)
Vậy \(x=\frac{27}{2};y=-9\)
ta có:
|2x-27|2017≥0
(3y+27)2016 ≥0
vậy |2x-27|2017+(3y+37)2016 ≥0
dấu "=" xảy ra khi
|2x-27|2017=(3y+27)2016=0
|2x-27|2017=0
=> 2x=27
=>x=27/2
(3y+27)2016=0
=> 3y=-27
=> y=-9
vậy với x=27/2 và y=-9 thì x,y thỏa mãn yêu cầu đề bài
Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)
⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)
Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy ...
Ta có \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2022}\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Vậy x = 27/2 ; y = -10/3 là giá trị cần tìm
ta có |2x-27| > hoặc = 0=> |2x-27|^2011> hoặc = 0
(3y+10)^2012> hoặc 0 mà |2x-27|^2011+(3y+10)^2012=0
=>2x-27=0 hoặc 3y+10=0=>2x=27 hoặc 3y=-10
=>x=13,5 hoặc x=-10/3
vậy .............................
Tìm các giá trị của x, y thỏa mãn: |2x-27|2011+(3y+10)2012=0
Giải:Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}}\)\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)
Kết hợp với giả thiết ta thấy \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\) nên:
\(\hept{\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)
Vậy x=\(\frac{27}{2}\);y=\(-\frac{10}{3}\) thỏa mãn bài toán
Sửa lại:
\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Rightarrow\left|2x-27\right|^{2011}=0\) và \(\left(3y+10\right)^{2012}=0\)
+) \(\left|2x-27\right|^{2011}=0\)
\(\Rightarrow\left|2x-27\right|=0\)
\(\Rightarrow2x-27=0\)
\(\Rightarrow2x=27\)
\(\Rightarrow x=13,5\)
+) \(\left(3y+10\right)^{2012}=0\)
\(\Rightarrow3y+10=0\)
\(\Rightarrow3y=-10\)
\(\Rightarrow y=\frac{-10}{3}\)
Vậy \(x=13,5;y=\frac{-10}{3}\)
Ta có:
\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
\(\Rightarrow\left|2x-27\right|^{2011}=0\) và \(\left(2y+10\right)^{2012}=0\)
+) \(\left|2x-27\right|^{2011}=0\)
\(\Rightarrow\left|2x-27\right|=0\)
\(\Rightarrow2x-27=0\)
\(\Rightarrow2x=27\)
\(\Rightarrow x=13,5\)
+) \(\left(2y+10\right)^{2012}=0\)
\(\Rightarrow2y+10=0\)
\(\Rightarrow2y=-10\)
\(\Rightarrow y=-5\)
Vậy \(x=13,5;y=-5\)
vì |2x-27| >=0 với mọi x
=> |2x-27|^2013 >=0 với mọi x
(3y+10)^2014 >=0 với mọi y
=> dấu = xảy ra <=>2x-27
3y+10
<=>x= 27/2
y= -10/3
học tốt
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
Vì
|2x - 27|2011 ≥ 0
(3y + 10)2012 ≥ 0
=> |2x - 27|2011 + (3y + 10)2012 ≥ 0
Dấu "=" xảy ra <=> |2x - 27|2011 = 0 và (3y + 10)2012 =0
<=> 2x - 27 = 0 và 3y + 10 = 0
=> x = 27/2 và y = - 10/3