K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

\(=a\left(a+2\right)\left(25a^2-1\right)=\left(a^2+2a\right)\left(25a^2-1\right)=\)

\(=25a^4-a^2+50a^3-2a=24a^4+48a^3+a^4+2a^3-a^2-2a\)

Ta có \(24a^4+48a^3\) chia hết cho 24

Xét

\(a^4+2a^3-a^2-2a=a^3\left(a+2\right)-a\left(a+2\right)=\left(a+2\right)\left(a^3-a\right)\)

\(=a\left(a^2-1\right)\left(a+2\right)=a\left(a-1\right)\left(a+1\right)\left(a+2\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)

Đây là tích 4 số tự nhiên liên tiếp

Trong 4 số tự nhiên liên tiếp tồn tại 2 số chẵn liên tiếp trong đó có 1 số chia hết cho 4 số chẵn còn lại chia hết cho 2 => tích 4 số tự nhiên liên tiếp chia hết cho 8

Trong 3 số tự nhiên liên tiếp sữ tồn tại 1 số chia hết cho 3

=> tích 4 số tự nhiên liên tiếp chia hết cho cả 3 vag 8, mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24

=> \(\left(a-1\right)a\left(a+1\right)\left(a+2\right)\) chia hết cho 24

Vậy \(a\left(a+2\right)\left(25a^2-1\right)\) chia hết cho 24

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

10 tháng 5 2022

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 tháng 2 2019

Vì n nhân với số nào cũng chia hết cho n nên với mọi n thuộc Z, A = n.(5n+3) chia hết cho n

13 tháng 2 2019

ta co:n.(a+b)chia het cho n

suy ra: n.(5.n+3) chia het cho n(dpcm)

23 tháng 11 2014

Đặt A =(n2 +n -1)2 - 1

A = (n2 +n -1 +1)(n2 +n -1 -1) = (n2 +n)(n2 +n -2) = n(n +1)(n2 + 2n -n -2) 

= n(n +1)((n -1)(n +2) = tích 4 số liên tiếp nên chia hết cho 24.

17 tháng 7 2016

a) n có 2 trường hợp

Với n = 2k +1 ( k thuộc Z)

=> (2k+1+6) . (2k+1+7)

= (2k + 7) .( 2k + 8)

= (2k + 7) . 2.(k+4) (chia hết cho 2)      ( 1 )

Với n = 2k

=> (2k + 6) . ( 2k + 7)

= 2. (k+3) . ( 2k + 7)   ( chia hết cho 2)     (2 )

Từ 1 và 2 

=> moi n thuoc Z thi

(n+6)x(n+7) chia het cho 2

17 tháng 7 2016

a) + Nếu n lẻ thì n + 7 chẵn => n + 7 chia hết cho 2 => (n + 6).(n + 7) chia hết cho 2

+ Nếu n chẵn thì n + 6 chẵn => n + 6 chia hết cho 2=> (n + 6).(n + 7) chia hết cho 2

=> (n + 6).(n + 7) luôn chia hết cho 2

Nói ngặn gọn hơn là: Do (n + 6).(n + 7) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2

b) n2 + n + 3

= n.(n + 1) + 3

Vì n.(n + 1) là tích 2 số tự nhiên nên chia hết cho 2; 3 không chia hết cho 2

=> n2 + n + 3 không chia hết cho 2