K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

Không mất tính tổng quát giả sử \(1\le a\le b\le c\le2\)\(\Rightarrow\hept{\begin{cases}\frac{a}{b}\le1\\\frac{b}{c}\le1\end{cases}\Rightarrow\left(1-\frac{a}{b}\right)\left(1-\frac{b}{c}\right)\ge0}\)(1)
Tương tự ta có \(\left(1-\frac{b}{a}\right)\left(1-\frac{c}{b}\right)\ge0\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{b}\right)\le2\left(\frac{a}{c}+\frac{c}{a}\right)\)
\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{a}{c}\right)+3\le5+2\left(\frac{a}{c}+\frac{c}{a}\right)\)(2)
Mà :\(\left(2-\frac{a}{c}\right)\left(\frac{1}{2}-\frac{a}{c}\right)\le0\Rightarrow\frac{1}{2}-\frac{a}{c}\le0\Leftrightarrow\frac{1}{2}\le\frac{a}{c}\le1\Rightarrow\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)
\(\left(3\right)\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le5+\frac{2.5}{2}=10\Rightarrow dpcm\)
Dấu= xảy ra khi \(\left(a,b,c\right)\in\left\{\left(1,1,2\right);\left(2,2,1\right)\right\}\)và các cặp hoán vị của nó 
\(\)
 

22 tháng 8 2016

1/  Cho \(a,b,c\ge1\)Chứng minh rằng:

\(\frac{1}{a\left(b+1\right)}+\frac{1}{b\left(c+1\right)}+\frac{1}{c\left(a+1\right)}\ge\frac{3}{1+abc}\)

2/  Cho \(a,b,c,d\in\left[0;1\right].\)Chứng minh rằng:

\(\frac{a}{bc+cd+db+1}+\frac{b}{cd+da+ac+1}+\frac{c}{da+ab+bd+1}+\frac{d}{ab+bc+ca+1}\le\frac{3}{4}+\frac{1}{4abcd}.\)

3/  Giả sử\(a,b>0\)và 

5 tháng 9 2021

lớp 9 mà

15 tháng 5 2021

\(\text{f(x)}\)\(\text{>0}\)\(\text{⇔}\)\(\text{2x}\)2\(\text{-3x+1}\)\(>0\)\(\left\{{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)

x(;\(\dfrac{1}{2}\))(1;+)

 

19 tháng 1 2022

Trl linh tinhbucqua

19 tháng 1 2022

bớt spam lại

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

a) \(A = \left\{ {a \in \mathbb{Z}| - 4 < a <  - 1} \right\}\)

A là tập hợp các số nguyên a thỏa mãn \( - 4 < a <  - 1\).

\( - 4 < a <  - 1\) có nghĩa là: a là số nguyên nằm giữa \( - 4\) và \( - 1\). Có các số \( - 3; - 2\).

Vậy \(A = \left\{ { - 3; - 2} \right\}\)

b) \(B = \left\{ {b \in \mathbb{Z}| - 2 < b < 3} \right\}\)

B là tập hợp các số nguyên b thỏa mãn \( - 2 < b < 3\).

\( - 2 < b < 3\) có nghĩa là: b là số nguyên nằm giữa \( - 2\) và \(3\). Có các số \( - 1;0;1;2\).

Vậy \(B = \left\{ { - 1;0;1;2} \right\}\)

c) \(C = \left\{ {c \in \mathbb{Z}| - 3 < c < 0} \right\}\)

C  là tập hợp các số nguyên c thỏa mãn \( - 3 < c < 0\).

\( - 3 < c < 0\) có nghĩa là: c là số nguyên nằm giữa \( - 3\) và 0. Có các số \( - 2; - 1\).

Vậy \(C = \left\{ { - 2; - 1} \right\}\)

d) \(D = \left\{ {d \in \mathbb{Z}| - 1 < d < 6} \right\}\)

D là tập hợp các số nguyên d thỏa mãn \( - 1 < d < 6\).

\( - 1 < d < 6\) có nghĩa là: b là số nguyên nằm giữa \( - 1\) và 6. Có các số \(0;1;2;3;4;5\).

Vậy \(D = \left\{ {0;1;2;3;4;5} \right\}\)

19 tháng 11 2023

 Xét câu A, hiển nhiên khi \(n\rightarrow+\infty\) thì \(a_n=\sqrt{n^3+n}\rightarrow+\infty\) nên dãy (an) không bị chặn.

 Ở câu C, lấy n chẵn và cho \(n\rightarrow+\infty\) thì dãy (cn) cũng sẽ tiến tới \(+\infty\). Do đó dãy (cn) cũng là 1 dãy không bị chặn.

 Ở câu B, ta xét hàm số \(f\left(x\right)=x^2+\dfrac{1}{x}\) trên \(\left[1;+\infty\right]\), ta thấy \(f'\left(x\right)=2x-\dfrac{1}{x^2}\) \(=\dfrac{2x^3-1}{x^2}\) \(=\dfrac{x^3+x^3-1}{x^2}>0,\forall x\ge1\) . Do đó \(f\left(x\right)\) đồng biến trên \(\left[1;+\infty\right]\) và do đó cũng đồng biến trên \(ℕ^∗\). Nói cách khác, (bn) là dãy tăng . Như vậy, nếu bn bị chặn thì tồn tại giới hạn hữu hạn. Giả sử \(\lim\limits_{n\rightarrow+\infty}b_n=L>1\). Chuyển qua giới hạn, ta được \(L=\lim\limits_{n\rightarrow+\infty}\left(n^2+\dfrac{1}{n}\right)=+\infty\), vô lí. Vậy (bn) không bị chặn trên.

 Còn lại câu D. Ta thấy với \(n\inℕ^∗\) thì hiển nhiên \(d_n>0\). Ta thấy \(d_n=\dfrac{3n}{n^3+2}=\dfrac{3n}{n^3+1+1}\le\dfrac{3n}{3\sqrt[3]{n^3.1.1}}=1\), với mọi \(n\inℕ^∗\). Vậy, (dn) bị chặn 

 \(\Rightarrow\) Chọn D.

 

giả sử a>(=)b>(=)c