K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2021
A,f(x)>0với∀x∈(−∞;2)  

 

 

15 tháng 5 2021

f(x)>0⇔4-2x>0⇔x<2⇒x∈(−∞;2) 

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$

hay $x\in (1;2)$

Đáp án D

17 tháng 12 2022

(x+1)(x-m)<=0

TH1: m>=0

=>-1<=x<=m

=>m>5

TH2: m<0

(x+1)(x-m)<=0

*Trường hợp 1: x+1>=0 và x-m<=0

=>-1<=x<=m

=>m<0

=>\(m\in\varnothing\)

*TH2: x+1<=0và x-m>=0

=>x<=-1 và x>=m

=>m>5

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Lời giải:

\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)

Suy ra khẳng định $a$ đúng

10 tháng 3 2022

Đặt \(f\left(x\right)=\dfrac{x-1}{\left(x-2\right)\left(x-3\right)}.\)

 \(x-1=0.\Leftrightarrow x=1.\\ x-2=0.\Leftrightarrow x=2.\\ x-3=0.\Leftrightarrow x=3.\)

undefined

\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\) \(\left(1;2\right)\cup\left(3;+\infty\right).\)

\(\Rightarrow B.\)

10 tháng 3 2022

b

 

10 tháng 3 2022

C

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Phương trình \({x^2} - 2x - 3 = 0\) có 2 nghiệm phân biệt \({x_1} =  - 1,{x_2} = 3\)

Có \(a = 1 > 0\) nên

\(f\left( x \right) = {x^2} - 2x - 3 > 0\) khi và chỉ khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\)

=> Phát biểu a) đúng.

\(f\left( x \right) = {x^2} - 2x - 3 < 0\) khi và chỉ khi \(x \in \left( { - 1;3} \right)\)

=> Phát biểu b) sai vì khi x=-1 hoặc x=3 thì \({x^2} - 2x - 3 = 0\) (không nhỏ hơn 0).