K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Dựa vào a^2 +b^2 = 1 và c^2+  d^2 = 1 và ac + bd +0

Ta có ab + cd = ab.1 + cd.1 = ab.(c^2 + d^2) + cd.(a^2+b^2)

                       = abc^2 + abd^2 + cda^2 + cdb^2

                       = ac(bc + da) + bd(ad + cb) = (ac+bd).(bc+da) = 0 . (bc+da) = 0

Vậy ab + cd =

14 tháng 7 2015

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

28 tháng 12 2015

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!

16 tháng 2 2020

Svacxo chăng :33 Ai thử đi, e sợ biến nhiều lắm :))

16 tháng 1 2018

tớ mới học lớp  7 thôi

20 tháng 10 2018

1-12334567890+1234567890

12 tháng 8 2017

tham khảo : Câu hỏi của mangoes - Toán lớp 8 - Học toán với OnlineMath

k mik nha!

4 tháng 1 2018

Địa chỉ mua bimbim : Số 38 đường NGuyễn Cảnh Chân TP Vinh Nghệ AN

8 tháng 11 2016

Ta có:

\(ab+cd=ab.1+cd.1\)

\(=ab\left(c^2+d^2\right)+cd\left(a^2+b^2\right)\)

\(=abc^2+abd^2+cda^2+cdb^2\)

\(=bc\left(ac+bd\right)+ad\left(bd+ac\right)\)

\(=bc.0+ad.0\)

\(=0\)

8 tháng 11 2016

Dạo này hay tl toán thế !

24 tháng 10 2016

Bài này dễ mà?

Theo đề ra:

\(ac+bd=0\Rightarrow\left(ac+bd\right)\left(ad+cb\right)=0\Rightarrow a^2cd+ac^2b+abd^2+b^2cd=0\)

\(\Rightarrow\left(a^2cd+b^2cd\right)+\left(ac^2b+abd^2\right)=0\Rightarrow cd\left(a^2+b^2\right)+ab\left(c^2+d^2\right)=cd+ab=0\)

 

24 tháng 10 2016

ukleuleu