K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

S=1-3+3^2-3^3+....+3^98-3^99

S=1.(1-3+3^2-3^3)+3^4.(1-3+3^2-3^3)+...+3^96.(1-3+3^2-3^3)

S=1.(-20)+3^4.(-20)+...+3^96.(-20)

S=(1+3^4+...+3^96).(-20) chia hết cho -20

Vậy S là bội của -20

b)

S=1-3+3^2-3^3+....+3^98-3^99

3S=3-3^2+3^3-3^4+...+3^99-3^100

4S=1-3^100

S=1-3^100/4

Suy ra 1-3^100 chia hết cho 4

Mà 1 chia 4 dư 1

Suy ra 3^100 chia 4 dư 1

21 tháng 8 2016

xi minh ghi lon cho 57 ma minh ghi 77

24 tháng 7 2015

ở phần câu hỏi tương tự có câu giống hết thế này được trả lời rôi bạn vào đó mà xem

24 tháng 7 2015

S=(1-3+32-33)+...+(396-397+398-399)

=-20+...+396(1-3+32-33)

=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20

b) 3S=3-32+33-34+..+399-3100

3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)

4S=1-3100

S=(1-3100):4

Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1

24 tháng 7 2015

S=(1-3+32-33)+...+(396-397+398-399)

 = -20+..+396(1-3+32-33)=-20+..+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20