Cho tam giác ABC vuông tại A. Tính diện tích tam giác ABC biết AB=5cm, AC=1/3 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Xét \(\Delta ABC\)vuông tại A
=>AB2 +AC2=BC2
32+AC2=52=> AC2=52-32= 25-9=16
=> AC=\(\sqrt{16}\)=4
Diện tích \(\Delta ABC\) là: (ACxAB)/2=4x3/2=12/2=6(cm2)
Vậy: diện tích am giác ABC là 6 cm2
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)
\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a: S ABC=1/2*10*18=90cm2
b: S CMA=2/3*90=60cm2
=>S CNM=30cm2
=>S ANMB=60cm2
\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)
Ta có: Tam giác ABC vuông và có góc B bằng 30 độ
=> góc C = 60 độ
=> Tam giác ABC là nửa tam giác đều
=> \(\frac{BC\sqrt{3}}{2}=AB=5\left(cm\right)\)
=> BC= \(\frac{5.2}{\sqrt{3}}=\frac{10}{\sqrt{3}}\)
=> AC = \(\frac{10}{\sqrt{3}}:2=\frac{5\sqrt{3}}{3}\) (cm)
=> AH = \(\frac{AB.AC}{BC}=\frac{5}{2}\left(cm\right)\)
b, Stam giác ABC=\(\frac{AB.AC}{2}=\frac{25\sqrt{3}}{6}\left(cm^2\right)\)
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow50^2=30^2+40^2\)* đúng *
Vậy tam giác ABC vuông tại A
b, Ta có : \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.40.30=600\)cm2
c, biết mỗi cách tam giác đồng dang :))
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{1200}{50}=24\)cm
Tam giác ABC vuông tại A
=>AB2+AC2=BC2 (định lí Pytago)
Hay 52+(1/3BC)2=BC2
=>25+1/9BC2=BC2
=>25=8/9BC2
=>BC2=225/8
=>BC=\(\frac{15\sqrt{2}}{4}\)
=>AC=\(\frac{5\sqrt{2}}{4}\)
Vậy diện tích tam giác ABC là:
5.\(\frac{5\sqrt{2}}{4}\)=\(\frac{25\sqrt{2}}{4}\)(cm2)