K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Đa thức f(x)=2x^2-8x+6

Thay x=1

f(x)=2.1^2-8.1+6

    =2.1-8.1+6

    =2-8+6=0

Vậy x=1 là nghiệm của đa thức f(x)

Thay x=3

f(x)=2.3^2-8.3+6

    =2.9-8.3+6

    =18-24+6=-6+6=0

Vậy x=3 là nghiệm của đa thức f(x)

 
 

25 tháng 4 2017

\(f\left(1\right)=2.1^2-8.1+6\)

\(f\left(1\right)=2-8+6\)

\(f\left(1\right)=0\)

Vậy x = 1 là nghiệm f(x)

\(f\left(3\right)=2.3^2-8.3+6\)

\(f\left(3\right)=18-24+6\)

\(f\left(3\right)=0\)

Vậy x = 3 là nghiệm f(x)

27 tháng 6

2\(x^3\) - 8\(x^2\) + 9\(x\) = 0

\(x\)(2\(x^2\)  - 8\(x\) + 9) = 0

\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)

 2\(x^2\) - 8\(x\) + 9 = 0 

2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0

(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0

2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0

  2(\(x-2\))(\(x\) - 2) + 1 = 0

   2(\(x-2\))2 + 1 = 0 (vô  lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2  +1 ≥ 1 > 0

Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0

 

 

 

20 tháng 4 2015

mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm

 

5 tháng 5 2016

Đa thức F(x) có nhiều nhất 3 nghiệm

f(x) = \(x\left(2x^2-8x+9\right)=0\)

TH1: x=  0

TH2: \(2x^2-8x+9=0\)

\(\Delta=\left(-8\right)^2-4.1.9=28>0\)

Vậy PT có 2 nghiệm x1 = \(\frac{8+\sqrt{28}}{2}\) ; x2 = \(\frac{8-\sqrt{28}}{2}\)

Vậy F(x) có 3 nghiệm lần lượt là 

x1 = 0 ; x2 = \(\frac{8+\sqrt{28}}{2}\) ; x3 = \(\frac{8-\sqrt{28}}{2}\)

25 tháng 3 2019

a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3

          =1-2+(-4)+(-8)

          =-9

b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)

          =x4-2x2+4x+8x3-6-8x3+3x2+4x

          =x4+x2+8x-6

25 tháng 3 2019

t là nốt câu c):

Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.

a) \(8x^3-18x^2+x+6\)

\(=8x^3-16x^2-2x^2+4x-3x+6\)

\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(8x^2-2x-3\right)\)

\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)

\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)

\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)

=> g(x) có 3 nghiệm là

x-2=0 <=> x=2

2x+1=0 <=> x=-1/2

4x-3=0 <=> x=3/4

vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}

b) tự làm đi (mk ko bt làm)

tui hong bít nàm :>>>>>

2 tháng 5 2022

đa thức có nghiệm là 1

14 tháng 9 2021

-1 chắc thế

22 tháng 4 2022

Thay x = 1 vào đa thứ F(x) ta cso

F(x) = 14 + 2.13 - 2.12- 6.1 + 5

F (x) = 0

Vậy 1 không phải là nghiệm của đa thức F(x)

 

Thay x = -1 vào đa thức F(x) ta có

F(x) = -14 + 2.(-13) - 2.(-12)- 6. (-1) + 5

F(x) = 8

Vậy -1 không phải là nghiệm của đa thức F(x)

 

Thay x = 2 vào đa thức F(x) ta có

F(x) = 24 + 2.23 - 2.22- 6.2 + 5

F(x) = 17

Vậy 2 không phải là nghiệm của đa thức F(x)

 

Thay x = 12 vào đa thức F(x) ta có

F(x) = -24 + 2.(-23) - 2.(-22)- 6.(-2) + 5

F(x)= -7

Vậy -2 không phải là nghiệm của đa thức F(x)

 

23 tháng 4 2022

Thank