Cho đa thức sau: $f(x)=2x^2-8x-64$ƒ (x)=2x2−8x−64
Các số nào là nghiệm của đa thức trên?
cách giải luôn nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức f(x)=2x^2-8x+6
Thay x=1
f(x)=2.1^2-8.1+6
=2.1-8.1+6
=2-8+6=0
Vậy x=1 là nghiệm của đa thức f(x)
Thay x=3
f(x)=2.3^2-8.3+6
=2.9-8.3+6
=18-24+6=-6+6=0
Vậy x=3 là nghiệm của đa thức f(x)
\(f\left(1\right)=2.1^2-8.1+6\)
\(f\left(1\right)=2-8+6\)
\(f\left(1\right)=0\)
Vậy x = 1 là nghiệm f(x)
\(f\left(3\right)=2.3^2-8.3+6\)
\(f\left(3\right)=18-24+6\)
\(f\left(3\right)=0\)
Vậy x = 3 là nghiệm f(x)
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0
mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm
Đa thức F(x) có nhiều nhất 3 nghiệm
f(x) = \(x\left(2x^2-8x+9\right)=0\)
TH1: x= 0
TH2: \(2x^2-8x+9=0\)
\(\Delta=\left(-8\right)^2-4.1.9=28>0\)
Vậy PT có 2 nghiệm x1 = \(\frac{8+\sqrt{28}}{2}\) ; x2 = \(\frac{8-\sqrt{28}}{2}\)
Vậy F(x) có 3 nghiệm lần lượt là
x1 = 0 ; x2 = \(\frac{8+\sqrt{28}}{2}\) ; x3 = \(\frac{8-\sqrt{28}}{2}\)
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
Thay x = 1 vào đa thứ F(x) ta cso
F(x) = 14 + 2.13 - 2.12- 6.1 + 5
F (x) = 0
Vậy 1 không phải là nghiệm của đa thức F(x)
Thay x = -1 vào đa thức F(x) ta có
F(x) = -14 + 2.(-13) - 2.(-12)- 6. (-1) + 5
F(x) = 8
Vậy -1 không phải là nghiệm của đa thức F(x)
Thay x = 2 vào đa thức F(x) ta có
F(x) = 24 + 2.23 - 2.22- 6.2 + 5
F(x) = 17
Vậy 2 không phải là nghiệm của đa thức F(x)
Thay x = 12 vào đa thức F(x) ta có
F(x) = -24 + 2.(-23) - 2.(-22)- 6.(-2) + 5
F(x)= -7
Vậy -2 không phải là nghiệm của đa thức F(x)