Cho a,b>0.Chứng minh \(\dfrac{a^2+b^2}{2}\ge ab\)
Gíup mình với ạ, mình cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng phân thức là có ngay mà?
\(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}\)
2 ) đề sai rùi bạn ơi ! Mk giải theo đề đúng nka !!
CMR : nếu \(a+b>1\)thì \(a^2+b^2>\frac{1}{2}\)
Ta có : \(a+b>1>0\) ( 1 )
Bình phương hai vế ta được :
\(\left(a+b\right)^2>1\)\(\Leftrightarrow a^2+2ab+b^2>1\) ( 2 )
Mặt khác :
\(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\) ( 3 )
Cộng từng vế của (2) và (3) , ta được:
\(2a^2+2b^2>1\)\(\Leftrightarrow2\left(a^2+b^2\right)>1\)\(\Leftrightarrow a^2+b^2>\frac{1}{2}\left(dpcm\right)\)
tk cko mk nka vì công ngồi đánh máy tình !!!
Biết \(a>b\)và \(b>2\)\(\Leftrightarrow a>2\)
Ta có : \(a>2\)
\(\Leftrightarrow-3a< -6\)( Nhân 2 vế với -3 bất đẳng thức đổi chiều )
\(\Leftrightarrow-3a+6< 0\)(Cộng 2 vế với 6)
\(\Leftrightarrowđpcm\)
tk nka !1
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
hay ΔADE cân tại A
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\\ =\dfrac{111...11\left(9a+b\right)}{111...11.10b}\)(có n chữ số 1 trong 111...11)
\(\dfrac{999...99a+111...11b}{111.110b}\\ =\dfrac{999...99a+a+111...11}{111.10b+c}=\dfrac{abbb...bb}{bbb...bc}=\dfrac{a}{c}\)(đpcm)
Đề sai nhé em
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) thì đúng
\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
Áp dụng BĐT \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\) ( x,y,z > 0) ( Link: Câu hỏi của ZoZ - Kudo vs Conan - ZoZ - Toán lớp 9 | Học trực tuyến)
Với: \(x=b+c,y=a+c,z=a+b\) ta được:
\(2\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge9\)
\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\ge4,5\)
\(\Rightarrow\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{a+c}+\dfrac{a+b+c}{a+b}\ge4,5\)
\(\Rightarrow\dfrac{a}{b+c}+1+\dfrac{b}{a+c}+1+\dfrac{c}{a+b}+1\ge4,5\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
mk thấy cm \(\dfrac{a^2+b^2}{2}\ge ab\) thì đúng hơn
Sửa đề: \(\dfrac{a^2+b^2}{2}\ge ab\)
Ta có: \(\left(a-b\right)^2\ge0\) với mọi a, b
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge ab\)
Dấu "=" xảy ra khi a=b