K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2022

a . \(\left(SAC\right)\cap\left(SBC\right)=SC\)   (3) 

Trên (SAC) hạ \(AH\perp SC\left(2\right)\) ; trên \(\left(SAB\right)\) hạ \(AK\perp SB\) 

C/m : HK \(\perp SC\) <- \(SC\perp\left(AHK\right)\) <- \(AK\perp SC\) 

C/m : AK \(\perp SC\)  . Ta có : \(BC\perp\left(SAB\right)\Rightarrow\left(SBC\right)\perp\left(SBA\right)\Rightarrow AK\perp\left(SBC\right)\left(AK\perp SB\right)\)

\(\Rightarrow AK\perp SC\) . Từ đó ; c/m được : \(HK\perp SC\)  (1) 

Từ (1) ; (2) ; (3) suy ra : \(\left(\left(SAC\right);\left(SBC\right)\right)=\widehat{AHK}\)

Tính được : AH ; AK  ; mặt khác : \(AK\perp\left(SBC\right)\Rightarrow AK\perp HK\) 

\(\Rightarrow\) \(\Delta HKA\)  \(\perp\) tại K 

\(\Rightarrow...\)

  

31 tháng 3 2022

Bạn biết lm ý b ko ạ

NV
20 tháng 4 2023

Lần lượt kẻ \(AE\perp SB\)  (1) và \(AF\perp SD\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp AE\) (2)

(1);(2) \(\Rightarrow AE\perp\left(SBC\right)\)

Hoàn toàn tương tự ta có \(AF\perp\left(SCD\right)\)

\(\Rightarrow\) Góc giữa (SBC) và (SCD) là góc giữa AE và AF

Cũng từ \(BC\perp\left(SAB\right)\) mà \(BC=\left(SBC\right)\cap\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa (SBCD) và đáy

\(\Rightarrow\widehat{SBA}=60^0\Rightarrow SA=AB.tan60^0=a\sqrt{3}\)

Hệ thức lượng: \(\dfrac{1}{AE^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AE=\dfrac{a\sqrt{3}}{2}\)

\(\dfrac{1}{AF^2}=\dfrac{1}{SA^2}+\dfrac{1}{AD^2}\Rightarrow AF=\dfrac{a\sqrt{6}}{2}\)

\(SB=\sqrt{SA^2+AB^2}=2a\) ; \(SD=a\sqrt{6}\)

\(BD=\sqrt{AB^2+AD^2}=2a\Rightarrow cos\widehat{BSD}=\dfrac{SB^2+SD^2-BD^2}{2SB.SD}=\dfrac{\sqrt{6}}{4}\)

\(SE=\sqrt{SA^2-AE^2}=\dfrac{3a}{2}\) ; \(SF=\sqrt{SA^2-AF^2}=\dfrac{a\sqrt{6}}{2}\)

\(\Rightarrow EF=\sqrt{SE^2+SF^2-2SE.SF.cos\widehat{BSD}}=\dfrac{a\sqrt{6}}{2}\)

\(\Rightarrow cos\widehat{EAF}=\dfrac{AE^2+AF^2-EF^2}{2AE.AF}=\dfrac{\sqrt{2}}{4}\)

NV
20 tháng 4 2023

loading...

NV
20 tháng 4 2023

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

Mà CD là giao tuyến (SCD) và (ABCD)

\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)

\(\Rightarrow\widehat{SDA}=60^0\Rightarrow SA=AD.tan60^0=3a\)

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Mà \(BC=\left(SBC\right)\cap\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABCD)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=3\Rightarrow\widehat{SBA}=...\)

b.

Từ A kẻ \(AE\perp BD\)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)

\(\Rightarrow BD\perp\left(SAE\right)\Rightarrow\widehat{SEA}\) là góc giữa (SBD) và (ABCD)

Hệ thức lượng: \(\dfrac{1}{AE^2}=\dfrac{1}{AB^2}+\dfrac{1}{AD^2}\Rightarrow AE=\dfrac{a\sqrt{3}}{2}\)

\(tan\widehat{SEA}=\dfrac{SA}{AE}=2\sqrt{3}\Rightarrow\widehat{SEA}=...\)

NV
20 tháng 4 2023

loading...

NV
21 tháng 4 2021

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow\left(SCD\right)\perp\left(SAD\right)\)

\(AC=\sqrt{AD^2+CD^2}=a\sqrt{2}\)

\(BC=\sqrt{BE^2+CE^2}=a\sqrt{2}\)

\(\Rightarrow AC^2+BC^2=AB^2\Rightarrow AC\perp BC\)

\(\Rightarrow BC\perp\left(SAC\right)\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)

b.

\(CD\perp\left(SAD\right)\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD) 

\(\Rightarrow\widehat{SDA}=30^0\Rightarrow SA=AD.tan30^0=\dfrac{a\sqrt{3}}{3}\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)

Qua S kẻ đường thẳng d song song AD

Do \(AD||CE\) \(\Rightarrow\) d là giao tuyến (SAD) và (SCE)

Mà \(d\perp\left(SAB\right)\Rightarrow\widehat{ASE}\) là góc giữa (SAD) và (SCE)

\(AE=\dfrac{AB}{2}=a\)

\(tan\widehat{ASE}=\dfrac{AE}{SA}=\sqrt{3}\Rightarrow\widehat{ASE}=60^0\)

21 tháng 4 2021

\(tan\widehat{ASE}=\sqrt{3}\) chứ aj?

21 tháng 4 2021

undefined

21 tháng 4 2021

Bạn ơi, ảnh bé quá mình không nhìn được

NV
18 tháng 4 2021

1.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (SAD)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)

2.

\(SA\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\end{matrix}\right.\) \(\Rightarrow\) các tam giác SAB và SAC vuông

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)

\(\Rightarrow\) Tam giác SBC vuông

Vậy tứ diện có 4 mặt đều là tam giác vuông (ABC hiển nhiên vuông theo giả thiết)

NV
17 tháng 4 2021

3.

a.

 \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)

b.

Gọi M là trung điểm BC \(\Rightarrow IM||AC\)

\(\Rightarrow AC||\left(SIM\right)\Rightarrow d\left(AC;SI\right)=d\left(AC;\left(SIM\right)\right)=d\left(A;\left(SIM\right)\right)\)

Qua A kẻ đường thẳng song song BC cắt IM kéo dài tại K

\(\Rightarrow IM\perp AK\Rightarrow IM\perp\left(SAK\right)\)

Trong mp (SAK), kẻ AH vuông góc SK

\(\Rightarrow AH\perp\left(SIM\right)\Rightarrow AH=d\left(A;\left(SIM\right)\right)\)

\(AK=CM=\dfrac{b}{2}\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AH=\dfrac{SA.AK}{\sqrt{SA^2+AK^2}}=\dfrac{\dfrac{h.b}{2}}{\sqrt{h^2+\dfrac{b^2}{4}}}=\dfrac{bh}{\sqrt{b^2+4h^2}}\)