K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2022

a . \(\left(SAC\right)\cap\left(SBC\right)=SC\)   (3) 

Trên (SAC) hạ \(AH\perp SC\left(2\right)\) ; trên \(\left(SAB\right)\) hạ \(AK\perp SB\) 

C/m : HK \(\perp SC\) <- \(SC\perp\left(AHK\right)\) <- \(AK\perp SC\) 

C/m : AK \(\perp SC\)  . Ta có : \(BC\perp\left(SAB\right)\Rightarrow\left(SBC\right)\perp\left(SBA\right)\Rightarrow AK\perp\left(SBC\right)\left(AK\perp SB\right)\)

\(\Rightarrow AK\perp SC\) . Từ đó ; c/m được : \(HK\perp SC\)  (1) 

Từ (1) ; (2) ; (3) suy ra : \(\left(\left(SAC\right);\left(SBC\right)\right)=\widehat{AHK}\)

Tính được : AH ; AK  ; mặt khác : \(AK\perp\left(SBC\right)\Rightarrow AK\perp HK\) 

\(\Rightarrow\) \(\Delta HKA\)  \(\perp\) tại K 

\(\Rightarrow...\)

  

31 tháng 3 2022

Bạn biết lm ý b ko ạ

NV
20 tháng 4 2023

Lần lượt kẻ \(AE\perp SB\)  (1) và \(AF\perp SD\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp AE\) (2)

(1);(2) \(\Rightarrow AE\perp\left(SBC\right)\)

Hoàn toàn tương tự ta có \(AF\perp\left(SCD\right)\)

\(\Rightarrow\) Góc giữa (SBC) và (SCD) là góc giữa AE và AF

Cũng từ \(BC\perp\left(SAB\right)\) mà \(BC=\left(SBC\right)\cap\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa (SBCD) và đáy

\(\Rightarrow\widehat{SBA}=60^0\Rightarrow SA=AB.tan60^0=a\sqrt{3}\)

Hệ thức lượng: \(\dfrac{1}{AE^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow AE=\dfrac{a\sqrt{3}}{2}\)

\(\dfrac{1}{AF^2}=\dfrac{1}{SA^2}+\dfrac{1}{AD^2}\Rightarrow AF=\dfrac{a\sqrt{6}}{2}\)

\(SB=\sqrt{SA^2+AB^2}=2a\) ; \(SD=a\sqrt{6}\)

\(BD=\sqrt{AB^2+AD^2}=2a\Rightarrow cos\widehat{BSD}=\dfrac{SB^2+SD^2-BD^2}{2SB.SD}=\dfrac{\sqrt{6}}{4}\)

\(SE=\sqrt{SA^2-AE^2}=\dfrac{3a}{2}\) ; \(SF=\sqrt{SA^2-AF^2}=\dfrac{a\sqrt{6}}{2}\)

\(\Rightarrow EF=\sqrt{SE^2+SF^2-2SE.SF.cos\widehat{BSD}}=\dfrac{a\sqrt{6}}{2}\)

\(\Rightarrow cos\widehat{EAF}=\dfrac{AE^2+AF^2-EF^2}{2AE.AF}=\dfrac{\sqrt{2}}{4}\)

NV
20 tháng 4 2023

loading...

13 tháng 3 2022

undefinedundefinedundefined

a: Qua S kẻ đường Sx song song SD

=>Sx vuông góc SA

SC vuông góc CD

=>SC vuông góc Sx

((SAB);(SCD))=góc ASC

b: (SBD) căt (SAB)=SB

Kẻ DA vuông góc AB

mà DA vuông góc SA

nên DA vuông góc (SAB)

=>DA vuông góc SB

Kẻ AK vuông góc SB

=>((SBD);(SAB))=góc AKD

c: (SBC) giao (SCD)=SC
Kẻ BH vuông góc SC

Qua H kẻ HF//CD

=>HF vuông góc SC

=>((SBC);(SCD))=góc BHF

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

b: BC vuông góc AB

BC vuông góc SA
=>BC vuông góc (SAB)

=>BC vuông góc AK

mà AK vuông góc SB

nên AK vuông góc (SBC)

 

15 tháng 4 2021

Phần góc giữa 2 mặt phẳng tui chưa học đến nên chưa làm được đoạn cuối phần b, bạn thông cảm nha!

undefined

16 tháng 4 2021

okee cảm ơn bạn

 

a: (SBD) giao (ABCD)=BD

AB vuông góc BD

SB vuông góc BD

=>góc cần tìm là góc SBA

23 tháng 5 2016

a. Ta có : \(\begin{cases}AB\perp BC\left(ABCDvuong\right)\\SA\perp BC\left(SA\perp\left(ABCD\right)\right)\end{cases}\)  \(\Rightarrow BC\perp\left(SAB\right)\) mà \(SB\subset\left(SAB\right)\) nên \(BC\perp SB\) Vậy \(\Delta SBC\left(\perp B\right)\)

tương tự ta có : \(\begin{cases}SA\perp DC\\AD\perp DC\end{cases}\) \(\Rightarrow DC\perp\left(SAD\right)\) mà \(SD\subset\left(SAD\right)\) nên \(SD\perp DC\) Vậy \(\Delta SDC\left(\perp D\right)\)

ta có \(SA\perp AD\) nên \(\Delta SAD\left(\perp A\right)\) 

Có \(SA\perp AB\) nên \(\Delta SAB\left(\perp A\right)\)

23 tháng 5 2016

b. Ta có : \(\begin{cases}AC\perp BD\\SA\perp BD\end{cases}\) \(\Rightarrow BD\perp\left(SAC\right)\) mà \(BD\subset\left(SBD\right)\) nên \(\left(SAC\right)\perp\left(SBD\right)\)

 

NV
20 tháng 4 2023

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

Mà CD là giao tuyến (SCD) và (ABCD)

\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)

\(\Rightarrow\widehat{SDA}=60^0\Rightarrow SA=AD.tan60^0=3a\)

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Mà \(BC=\left(SBC\right)\cap\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABCD)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=3\Rightarrow\widehat{SBA}=...\)

b.

Từ A kẻ \(AE\perp BD\)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)

\(\Rightarrow BD\perp\left(SAE\right)\Rightarrow\widehat{SEA}\) là góc giữa (SBD) và (ABCD)

Hệ thức lượng: \(\dfrac{1}{AE^2}=\dfrac{1}{AB^2}+\dfrac{1}{AD^2}\Rightarrow AE=\dfrac{a\sqrt{3}}{2}\)

\(tan\widehat{SEA}=\dfrac{SA}{AE}=2\sqrt{3}\Rightarrow\widehat{SEA}=...\)

NV
20 tháng 4 2023

loading...