K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2023

Đây là định lí đáng đồng ý với nhưng chưa được chứng minh chắc chắn. Định lí này được gọi là định lí Goldbach mở rộng (hay đôi khi cũng gọi là tổng ba số nguyên tố).

Đây là một trong những bài toán nổi tiếng của toán học và đã được các nhà toán học khám phá từ lâu. Mặc dù chưa có chứng minh chắc chắn cho định lí này đối với tất cả các số nguyên lớn hơn 2, nhưng các nhà toán học đã chứng minh rằng định lí Goldbach đúng đối với các số nguyên lớn hơn một số rất lớn. Ví dụ, đã chứng minh rằng mọi số chẵn lớn hơn 2 đều là tổng của hai số nguyên tố.

Trong những năm gần đây, các nhà toán học đã tiến bộ rất nhiều trong việc giải quyết định lí Goldbach. Năm 2012, Terence Tao chứng minh rằng mọi số lớn hơn hoặc bằng 10^14 đều là tổng của ba số nguyên tố và năm 2013, Yitang Zhang chứng minh rằng có vô số số nguyên tố giá trị tuyệt đối của chúng chỉ bằng cách ước tính đủ tốt.

Tuy nhiên, vẫn chưa có chứng minh chính xác cho định lí Goldbach đối với tất cả các số nguyên, và nó vẫn được coi là một trong những vấn đề toán học lớn nhất chưa được giải quyết.

 

 

22 tháng 5 2023

Đây là định lí đáng đồng ý với nhưng chưa được chứng minh chắc chắn. Định lí này được gọi là định lí Goldbach mở rộng (hay đôi khi cũng gọi là tổng ba số nguyên tố).

Đây là một trong những bài toán nổi tiếng của toán học và đã được các nhà toán học khám phá từ lâu. Mặc dù chưa có chứng minh chắc chắn cho định lí này đối với tất cả các số nguyên lớn hơn 2, nhưng các nhà toán học đã chứng minh rằng định lí Goldbach đúng đối với các số nguyên lớn hơn một số rất lớn. Ví dụ, đã chứng minh rằng mọi số chẵn lớn hơn 2 đều là tổng của hai số nguyên tố.

Trong những năm gần đây, các nhà toán học đã tiến bộ rất nhiều trong việc giải quyết định lí Goldbach. Năm 2012, Terence Tao chứng minh rằng mọi số lớn hơn hoặc bằng 10^14 đều là tổng của ba số nguyên tố và năm 2013, Yitang Zhang chứng minh rằng có vô số số nguyên tố giá trị tuyệt đối của chúng chỉ bằng cách ước tính đủ tốt.

Tuy nhiên, vẫn chưa có chứng minh chính xác cho định lí Goldbach đối với tất cả các số nguyên, và nó vẫn được coi là một trong những vấn đề toán học lớn nhất chưa được giải quyết. đây nhé chưa biết chắc

 

8 tháng 5 2022

Đăng cho đúng lớp vào !!!

8 tháng 5 2022

rồi sao nữa, lớp 5 chưa học số nguyên tố đâu, đăng cho đúng lớp đi

8 tháng 5 2022

Đăng cho đúng lớp !!

lớp 6 học cái đấy rồi .-.

21 tháng 8 2023

Bài 1: Thuyết số Goldbach là một bài toán trong lĩnh vực thuyết số, được đặt theo tên của nhà toán học Christian Goldbach. Thuyết số Goldbach đưa ra một giả thuyết rằng tất cả các số nguyên lớn hơn 2 đều có thể biểu diễn được dưới dạng tổng của hai số nguyên tố.

 

Ví dụ: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + , 10 = 3 + 7 hoặc 5 + 5, ...

 

Mặc dù đã có nhiều nỗ lực để chứng minh hoặc phản chứng giả thuyết này, nhưng cho đến nay vẫn chưa có bằng chứng cụ thể. Thuyết số Goldbach vẫn là một bài toán chưa được giải quyết hoàn toàn trong thuyết số hiện đại.

21 tháng 8 2023

Để giải biểu thức này, chúng ta có thể thực hiện theo thứ tự các phép toán (còn được gọi là PEMDAS).

 

Đầu tiên, chúng ta đơn giản hóa phép chia: 1/3.

 

1/3 bằng 0,33333 (số thập phân lặp lại).

 

Bây giờ, chúng ta có thể viết lại biểu thức:

 

9 - 3 + 0.33333

 

Tiếp theo, chúng ta trừ 3 từ 9:

 

9 - 3 = 6

 

Cuối cùng, chúng ta thêm 0,33333 vào 6:

 

6 + 0.33333 = 6.33333

 

Vì vậy, kết quả của biểu thức 9 - 3 + 1/3 xấp xỉ 6,33333.

8 tháng 10 2023

(????????????????????) sao toán lớp bốn khó thế

 

 

 

 

 

 

 

 

8 tháng 10 2023

._. :0 :) 

13 tháng 1

đáp án đây

Trải qua hơn 250 năm, các nhà toán học vẫn chưa chứng minh được giả thuyết này và chúng được mọi người gọi là giả thuyết Christian Goldbach tam nguyên. 

Theo Toán học hiện đại, Terence Tao (học tại trường đại học California, Mỹ) là người tiếp cận gần nhất với bài toán của Christian Goldbach. Ông đã nghiên cứu và chứng minh rằng  mỗi số lẻ là tổng của tối đa 5 số nguyên tố. Và hy vọng có thể giảm từ 5 xuống còn 3 như giả thuyết mà Christian Goldbach đã đưa ra. 

17 tháng 11 2017

a,6=2+2+2

7=2+2+3

8=3+3+2

b,30=17+13

32=19+13

17 tháng 11 2017

a) 6 = 2+2+2

7 = 2+2+3

8 = 2+3+3

b) 30 = 19 + 11

32 = 19 +13