K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Ta có VT = (x-y)+ (x+z)+ z=12

Ta có số chính phương <= 12 là các số 1,4,9 ta thấy bộ 3 số chính phương cộng lại bằng 12 chỉ có (4;4;4) vậy ta có hệ 

(x-y)= (x+z)= z=4 

Bạn giải phần còn lại nha

28 tháng 11 2023

\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0

(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0

\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0

(\(x\) - 2).(\(x^4\) - y2 - 3) = 8

8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}

Lập bảng ta có:

\(x-2\) -8 -4 -2 -1 1 2 4 8
\(x\) -6 -2 0 1 3 4 6 10
\(x^4\) - y2 - 3 -1 -2 -4 -8 8 4 2 1
y  \(\pm\)\(\sqrt{1294}\) \(\pm\)\(15\) \(\pm\)1 \(\pm\)\(\sqrt{6}\) y2 = -10 (ktm) \(\pm\)\(\sqrt{249}\) \(\pm\)\(\sqrt{1291}\) \(\pm\)\(\sqrt{9996}\)

vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:

(\(x\); y) = (0; -1;); (0; 1)

 

7 tháng 2 2017

11 tháng 9 2021

\(Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5=\left[\left(x^2+2xy+y^2\right)-2z\left(x+y\right)+z^2\right]+\left(y^2-2y+1\right)+\left(z^2+4z+4\right)=\left(x+y-z\right)^2+\left(y-1\right)^2+\left(z+2\right)^2\ge0\)

\(minQ=0\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-3\\y=1\\z=-2\end{matrix}\right.\)

11 tháng 9 2021

`Q=x^2+2y^2+2z^2+2xy-2yz-2xz-2y+4z+5`

`Q=(x^2+y^2-z^2+2xy-2yz-2xz)+(y^2-2y+1)+(z^2+4z+4)`

`Q=(x+y-z)^2+(y-1)^2+(z+2)^2`

Ta thấy :

`(x+y-z)^2>=0`

`(y-1)^2>=0`

`(z+2)^2>=0`

`=>(x+y-z)^2+(y-1)^2+(z+2)^2>=0`

Dấu = xảy ra 

`<=>` $\begin{cases}x+y-z=0\\y-1=0\\z+2=0\end{cases}$

`<=>` $\begin{cases}x=-3\\y=1\\z=-2\end{cases}$

NV
9 tháng 5 2021

Do \(2x^2+x+1>0;\forall x\) nên pt tương đương:

\(y^2+1=\dfrac{x+5}{2x^2+x+1}\)

Ta có: \(6-\dfrac{x+5}{2x^2+x+1}=\dfrac{12x^2+5x+1}{2x^2+x+1}=\dfrac{12\left(x+\dfrac{5}{24}\right)^2+\dfrac{23}{48}}{2\left(x+\dfrac{1}{4}\right)^2+\dfrac{7}{8}}>0\) ; \(\forall x\)

\(\Rightarrow\dfrac{x+5}{2x^2+x+1}< 6\Rightarrow y^2+1< 6\)

\(\Rightarrow y^2< 5\) \(\Rightarrow y^2=\left\{0;1;4\right\}\)

- Với \(y^2=0\Rightarrow y=0\Rightarrow2x^2+x+1=x+5\Rightarrow x^2=2\) (ko tồn tại x nguyên thỏa mãn) \(\Rightarrow\) loại

- Với \(y^2=1\Rightarrow2\left(2x^2+x+1\right)=x+5\)

\(\Leftrightarrow4x^2+x-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)

- Với \(y^2=4\Rightarrow5\left(2x^2+x+1\right)=x+5\)

\(\Leftrightarrow10x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{5}\left(loại\right)\end{matrix}\right.\)

Vậy pt có 4 cặp nghiệm nguyên: 

\(\left(x;y\right)=\left(-1;-1\right);\left(-1;1\right);\left(0;-2\right);\left(0;2\right)\)

9 tháng 10 2020

Với \(y\ne\frac{7}{2}\)(Do y nguyên) thì\(y^2+2xy-7x-12=0\Leftrightarrow x\left(7-2y\right)=y^2-12\Leftrightarrow x=\frac{y^2-12}{7-2y}\)

Vì x nguyên nên \(\frac{y^2-12}{7-2y}\)nguyên \(\Rightarrow y^2-12⋮2y-7\Rightarrow4y^2-48⋮2y-7\Rightarrow\left(2y-7\right)^2+14\left(2y-7\right)+1⋮2y-7\Rightarrow1⋮2y-7\)\(\Rightarrow2y-7\inƯ\left(1\right)=\left\{\pm1\right\}\Rightarrow\orbr{\begin{cases}2y-7=-1\\2y-7=1\end{cases}}\Rightarrow\orbr{\begin{cases}y=3\\y=4\end{cases}}\)

* Với y = 3 thì x = -3

* Với y = 4 thì x = -4

Vậy phương trình có 2 cặp nghiệm nguyên (x; y) = (-3; 3) ; (-4; 4)

18 tháng 10 2020

Giúp mình bài này với nhé: tìm GTNN của thương của phép chia (4x^5+4x^4+4x^3-x-1):(2x^3+x-1), nhớ là đặt phép chia giùm mình luôn đừng ghi kết quả thôi nhé 

2 tháng 8 2021

a)2x2+4x=19-3y2

⇔2x2+4x+2=21-3y2

⇔2(x+1)2=3(7-y2)Ta có 2(x+1)2⋮2⇒3(7-y2)⋮2

⇒7-y2⋮2

⇒y lẻ (1)

Ta lại có 2(x+1)2≥0

⇒3(7-y2)≥0

⇒7-y2≥0

⇒y2≤7

⇒y2∈{1;4} (2)

Từ (1),(2)⇒y2∈{1}

⇒y∈{-1;1}

Ta có y2=1⇒2(x+1)2=3(7-y2)=18⇒(x+1)2=9

⇒x+1=3 hoặc x+1=-3

⇒x=2 hoặc x=-4

Vậy {x,y}={(-1;2);(-1;-4);(1;2);(1;-4)}

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).