(a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2)=2a^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét vế trái
\(\left(a+b\right)\left(a^2-2ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
= \(a^3+b^3+a^3-b^3\)= \(2a^3=VP\)
Vậy \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)= \(2a^3\)
Coi như biểu thức xác định
\(\frac{a-b}{a\left(a+b\right)}+\frac{a+b}{a\left(a-b\right)}=\frac{3a-b}{\left(a-b\right)\left(a+b\right)}\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a+b\right)^2=a\left(3a-b\right)\)
\(\Leftrightarrow2a^2+2b^2=3a^2-ab\)
\(\Leftrightarrow a^2-ab-2b^2=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow a=2b\Leftrightarrow\frac{a}{b}=2\)
\(P=\frac{\left(\frac{a}{b}\right)^3+2\left(\frac{a}{b}\right)^2+2}{2\left(\frac{a}{b}\right)^3+\frac{a}{b}+2}=\frac{2^3+2.2^2+2}{2.2^3+2+2}=...\)
VT = ( a + b )(a^2 - ab + b^2) + ( a- b)(a^2 + ab + b^2)
= a^3 + b^3 + a^3 - b^3
= 2a^3
=VP
=> ĐPCM
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\)
\(\Leftrightarrow\frac{a-b}{a\left(a+b\right)}+\frac{a+b}{a\left(a-b\right)}=\frac{3a-b}{\left(a-b\right)\left(a+b\right)}\)
\(\Leftrightarrow\frac{\left(a-b\right)^2+\left(a+b\right)^2}{a\left(a-b\right)\left(a+b\right)}=\frac{3a^2-ab}{a\left(a-b\right)\left(a+b\right)}\)
\(\Leftrightarrow a^2-2ab+b^2+a^2+2ab+b^2=3a^2-ab\)
\(\Leftrightarrow2a^2+2b^2=3a^2-ab\)
\(\Leftrightarrow a^2-ab=2b^2\)
\(\Leftrightarrow\left(a^2+ab\right)-\left(2ab+2b^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-2b\right)=0\Rightarrow\orbr{\begin{cases}a=-b\left(l\text{do }\left|a\right|\ne\left|b\right|\right)\\a=2b\left(TM\right)\end{cases}}\)
Thay a = 2b vào B tự tính
B sai đề
bien doi ve trai ta duoc
(a+b)(a^2-ab+b^2)(a-b)(a^2+ab+b^2)=a^3+b^3+a^3-b^3=2a^3=VP(dpcm)