Cho 2 đường tròn (O) và (O') cắt nhau tại A và B. Kẻ tiếp tuyến chung CD (C, D là tiếp điểm, C thuộc (O), D thuộc (O')). Đường thẳng qua A song song với CD cắt (O) tại E, (O') tại F. Gọi M, N theo thứ tự là giao điểm BD và BC với EF. Gọi I là giao điểm của EC với FD. CMR:
a) CMR tứ giác BCID nội tiếp.
b) CD là trung trực của đoạn thẳng Al.
c) IA là phân giác góc MIN.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
9 tháng 8 2023
a: Xét (OC/2) có
góc OMC là góc nội tiếp chắn nửa đường tròn
=>góc OMC=90 độ
=>CM vuông góc MO
Xét (O') có
góc BPC nội tiếp
BC là đường kính
=>góc BPC=90 độ
=>BP vuông góc CM
=>BP//OM
1 tháng 6 2023
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA^2=MC*MD=MH*MO
=>MC/MO=MH/MD
=>ΔMCH đồng dạng với ΔMOD
=>góc MCH=góc MOD
=>góc HOD+góc HCD=180 độ
=>HODC nội tiếp
a: TH1: A và CD nằm cùng một phía so với đường O'O
góc ABC=góc AEC=góc ICD
góc DBC=gsoc AED=góc IDC
=>góc DBA+góc DIC=góc ABC+góc DBC+góc DIC
=góc ICD+góc IDC+góc DIC=180 độ
=>BCID nội tiếp
TH2: A và CD nằm khác phía so với O'O
ABCE nội tiếp (O)
=>góc BCE+góc BAE=180 độ
=>góc BCE=góc BAF
Tương tự, ta được: góc BAF=góc BDI
=>góc BCE=góc BDI
=>góc BCI+góc BDI=180 độ
=>BCID nội tiếp
b: góc ICD=góc CEA=góc DCA
=>góc ICD=góc DCA
Chứng minh tương tự, ta được: góc IDC=góc CDA
Xét ΔICD và ΔACD có
góc ICD=góc DCA
CD chung
góc IDC=góc CDA
=>ΔICD=ΔACD
=>DI=DA và CI=CA
=>CD là trung trực của AI
c:
CD vuông góc AI
=>AI vuông góc MN
Gọi K là giao của AB và CD
Chứng minh được CK^2=KA*KB=KD^2
=>KC=KC
CD//MN
=>KC/AN=KD/AM=KB/AB
=>AN=AM
=>ΔIMN cân tại I
=>IA là phân giác của góc MIN