K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\lim\limits_{x\rightarrow-1^+}x+1=0\)

=>\(\lim\limits_{x\rightarrow-1^+}\dfrac{1}{x+1}=+\infty\)

b: \(\lim\limits_{x\rightarrow-\infty}1-x^2=\lim\limits_{x\rightarrow-\infty}\left[x^2\left(\dfrac{1}{x^2}-1\right)\right]\)

\(=-\infty\)

c: \(\lim\limits_{x\rightarrow3^-}\dfrac{x}{3-x}=\lim\limits_{x\rightarrow3^-}=\dfrac{-x}{x-3}\)

\(\lim\limits_{x\rightarrow3^-}x-3=0\)

\(\lim\limits_{x\rightarrow3^-}-x=3>0\)

=>\(\lim\limits_{x\rightarrow3^-}\dfrac{x}{3-x}=+\infty\)

a: \(=\lim\limits_{x\rightarrow+\infty}\dfrac{4+\dfrac{3}{x}}{2}=\dfrac{4}{2}=2\)

b: \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{2}{x}}{3+\dfrac{1}{x}}=0\)

c: \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}}{1+\dfrac{1}{x}}=1\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{9x + 1}}{{3x - 4}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {9 + \frac{1}{x}} \right)}}{{x\left( {3 - \frac{4}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{9 + \frac{1}{x}}}{{3 - \frac{4}{x}}} = \frac{{9 + 0}}{{3 - 0}} = 3\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{7x - 11}}{{2x + 3}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{x\left( {7 - \frac{{11}}{x}} \right)}}{{x\left( {2 + \frac{3}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{7 - \frac{{11}}{x}}}{{2 + \frac{3}{x}}} = \frac{{7 - 0}}{{2 + 0}} = \frac{7}{2}\)

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 + \frac{1}{{{x^2}}}}  = \sqrt {1 + 0}  = 1\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

d) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to  - \infty }  - \sqrt {1 + \frac{1}{{{x^2}}}}  =  - \sqrt {1 + 0}  =  - 1\)

e) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x - 6 < 0,x \to {6^ - }\end{array} \right.\)

Do đó, \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}} =  - \infty \)                

g) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x + 7 > 0,x \to {7^ + }\end{array} \right.\)

Do đó, \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}} =  + \infty \)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\mathop {\lim }\limits_{x \to  - 1} \left( {3{x^2} - x + 2} \right) = \mathop {\lim }\limits_{x \to  - 1} \left( {3{x^2}} \right) - \mathop {\lim }\limits_{x \to  - 1} x + \mathop {\lim }\limits_{x \to  - 1} 2\)

                                                \( = 3\mathop {\lim }\limits_{x \to  - 1} \left( {{x^2}} \right) - \mathop {\lim }\limits_{x \to  - 1} x + \mathop {\lim }\limits_{x \to  - 1} 2 = 3.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 2 = 6\)

b) \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 16}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \left( {x + 4} \right) = \mathop {\lim }\limits_{x \to 4} x + \mathop {\lim }\limits_{x \to 4} 4 = 4 + 4 = 8\)

c) \(\mathop {\lim }\limits_{x \to 2} \frac{{3 - \sqrt {x + 7} }}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {3 - \sqrt {x + 7} } \right)\left( {3 + \sqrt {x + 7} } \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{{3^2} - \left( {x + 7} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}}\)

                                         \( = \mathop {\lim }\limits_{x \to 2} \frac{{2 - x}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - \left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - 1}}{{3 + \sqrt {x + 7} }}\)

                                         \( = \frac{{\mathop {\lim }\limits_{x \to 2} \left( { - 1} \right)}}{{\mathop {\lim }\limits_{x \to 2} 3 + \sqrt {\mathop {\lim }\limits_{x \to 2} x + \mathop {\lim }\limits_{x \to 2} 7} }} = \frac{{ - 1}}{{3 + \sqrt {2 + 7} }} =  - \frac{1}{6}\)

a: \(\lim\limits_{x\rightarrow-2}x^2-7x+4=\left(-2\right)^2-7\cdot\left(-2\right)+4=22\)

b: \(\lim\limits_{x\rightarrow3}\dfrac{x-3}{x^2-9}=\lim\limits_{x\rightarrow3}\dfrac{1}{x+3}=\dfrac{1}{3+3}=\dfrac{1}{6}\)

c: \(\lim\limits_{x\rightarrow1}\dfrac{3-\sqrt{x+8}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{9-x-8}{3+\sqrt{x+8}}\cdot\dfrac{1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{-1}{3+\sqrt{x+8}}\)

\(=-\dfrac{1}{6}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\mathop {\lim }\limits_{x \to 2} \left( {{x^2} - 4x + 3} \right) = \mathop {\lim }\limits_{x \to 2} {x^2} - \mathop {\lim }\limits_{x \to 2} \left( {4x} \right) + 3 = {2^2} - 4.2 + 3 =  - 1\)

b) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2} - 5x + 6}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \frac{{\left( {x - 3} \right)\left( {x - 2} \right)}}{{x - 3}} = \mathop {\lim }\limits_{x \to 3} \left( {x - 2} \right) = \mathop {\lim }\limits_{x \to 3} x - 2 = 3 - 2 = 1\)

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x  + 1}} = \frac{1}{{\sqrt 1  + 1}} = \frac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Áp dụng giới hạn một bên thường dùng, ta có : \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}} =  + \infty \)

b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{x}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^+ }} \frac{{ - x}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right) =  - \mathop {\lim }\limits_{x \to {2^ + }} x =  - 2;\mathop {\lim }\limits_{x \to {2^ +}} \frac{1}{{x - 2}} =  +\infty \)

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}} =  - \infty \)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{1 - 3{x^2}}}{{{x^2} + 2x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2}\left( {\frac{1}{{{x^2}}} - 3} \right)}}{{{x^2}\left( {1 + \frac{{2x}}{{{x^2}}}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{1}{{{x^2}}} - 3}}{{1 + \frac{2}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{{x^2}}} - \mathop {\lim }\limits_{x \to  + \infty } 3}}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{x}}} = \frac{{0 - 3}}{{1 + 0}} =  - 3\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 + \frac{1}{x}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\frac{{\mathop {\lim }\limits_{x \to  - \infty } 2}}{{\mathop {\lim }\limits_{x \to  - \infty } 1 + \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}}} = 0.\frac{2}{{1 + 0}} = 0\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Đặt \(f\left( x \right) = 2{x^2} - x\).

Hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\).

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \({x_n} \to 3\) khi \(n \to  + \infty \). Ta có:

\(\lim f\left( {{x_n}} \right) = \lim \left( {2x_n^2 - {x_n}} \right) = 2.\lim x_n^2 - \lim {x_n} = {2.3^2} - 3 = 15\).

Vậy \(\mathop {\lim }\limits_{x \to 3} \left( {2{x^2} - x} \right) = 15\).

b) Đặt \(f\left( x \right) = \frac{{{x^2} + 2x + 1}}{{x + 1}}\).

Hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\).

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \({x_n} \to  - 1\) khi \(n \to  + \infty \). Ta có:

\(\lim f\left( {{x_n}} \right) = \lim \frac{{x_n^2 + 2{x_n} + 1}}{{{x_n} + 1}} = \lim \frac{{{{\left( {{x_n} + 1} \right)}^2}}}{{{x_n} + 1}} = \lim \left( {{x_n} + 1} \right) = \lim {x_n} + 1 =  - 1 + 1 = 0\).

Vậy \(\mathop {\lim }\limits_{x \to  - 1} \frac{{{x^2} + 2x + 1}}{{x + 1}} = 0\).