9> Cho a,b,c,d là các số nguyên dương thỏa \(a^2+b^2=c^2+d^2\)
CMR: a+b+c+d là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hằng đẳng thức
\(a^2+b^2=\left(a+b\right)^2-2ab;\)
\(c^2+d^2=\left(c+d\right)^2-2cd\)
\(\Rightarrow\)
\(a^2+b^2\)và \(a+b\) cùng chẵn, hoặc cùng lẻ;
\(c^2+d^2\) và \(c+d\)cùng chẵn hoặc cùng lẻ. Kết hợp với
\(a^2+b^2=c^2+d^2\Rightarrow a+b\) và \(c+d\) cùng chẵn hoặc cùng lẻ
Từ đó \(a+b+c+d\)chẵn, và vì \(a+b+c+d\ge4\)
nên \(a+b+c+d\) là hợp số.
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Theo hằng đẳng thức
a^2+b^2=(a+b)^2-2ab;
c^2+d^2=(c+d)^2-2cd.
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ;
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn,
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì
a+b+c+d>=4 nên a+b+c+d là hợp số.
tick cho mk nha
Xét:\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)\left(d^2+d\right)\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta có: \(a.\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho 2
\( \implies\)\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho 2
Mà \(a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) chia hết cho 2
\( \implies\) \(a+b+c+d\) chia hết cho 2
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số (đpcm)
Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì \(a\) là số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp .
\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.
\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn .
Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .
Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))
Vậy : \(a+b+c+d\) là hợp số .
Xét :
Vì là số nguyên dương nên là hai số tự nhiên liên tiếp .
chia hết cho 2. Tương tự ta có : đều chia hết cho 2.
là số chẵn .
Lại có : là số chẵn .
Do đó : là số chẵn mà (Do )
Vậy : là hợp số .
Lời giải:
$a^2+b^2+c^2+d^2=(a+b)^2-2ab+(c+d)^2-2cd$
$=(a+b)^2+(c+d)^2-2ab-2cd$
$=(a+b+c+d)^2-2(a+b)(c+d)-2ab-2cd\vdots 2$
$\Rightarrow (a+b+c+d)^2\vdots 2$
$\Rightarrow a+b+c+d\vdots 2$
Mà $a,b,c,d$ là số nguyên dương nên $a+b+c+d>2$
Vậy $a+b+c+d$ là số chẵn lớn hơn 2, do đó nó là hợp số (đpcm)
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Xét \(( a^2 + b^2 + c^2 + d^2 ) - ( a + b + c + d)\)
\(= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)\)
Vì a là số nguyên dương nên $a$, $(a – 1)$ là hai số tự nhiên liên tiếp
\(\Rightarrow a-1⋮2\)
Tương tự ta có $b(b-1)$; $c(c-1)$; $d(d-1)$ đều chia hết cho 2
=> $a(a -1) + b( b -1) + c( c – 1) + d( d – 1)$ là số chẵn
Lại có \(a^2 + c^2 = b^2 + d^2=> a^2 + b^2 + c^2 + d^2 = 2( b^2 + d^2)\) là số chẵn.
Do đó $a + b + c + d$ là số chẵn mà $a + b + c + d > 2$ (Do \(a,b,c,d\in N^{sao}\))
\(\Rightarrow\) $a + b + c + d$ là hợp số.
Xét \(P=a^2+b^2+c^2+d^2-\left(a+b+c+d\right)\)
\(=\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)
\(=\left(a-1\right)a+\left(b-1\right)b+\left(c-1\right)c+\left(d-1\right)d\)
Vì (a-1)a là tích 2 số nguyên liên tiếp => (a-1)a chia hết cho 2 hay (a-1)a là số chẵn
Tương tự : (b-1)b;(c-1)c;(d-1)d cũng là các số chẵn
=>P là số chẵn
=>\(P=a^2+b^2+c^2+d^2-\left(a+b+c+d\right)\) là số chẵn
Mà theo đề: \(a^2+b^2=c^2+d^2=>a^2+b^2+c^2+d^2\) là số chẵn
=>a+b+c+d cũng là số chẵn ,mà a+b+c+d chia hết cho 2 nên sẽ lớn hơn 2 (do a,b,c,d nguyên dương)
=>a+b+c+d là hợp số (đpcm)