K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AKIB có

\(\widehat{AKB}=\widehat{AIB}\left(=90^0\right)\)

\(\widehat{AKB}\) và \(\widehat{AIB}\) là hai góc cùng nhìn cạnh AB

Do đó: AKIB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

3 tháng 8 2023

a) Ta có:
- Gọi M là trung điểm của AC.
- Vì I là trung điểm của BC nên IM // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Ta có BM = MC (vì M là trung điểm của AC).
- Vì IM // AH và BM = MC nên tam giác IMC và tam giác AHM là hai tam giác đồng dạng.
- Do đó, ta có: ∠IMC = ∠AHM.
- Nhưng ∠IMC = 90° (vì IM vuông góc với BC).
- Vậy, ta có: ∠AHM = 90°.
- Từ đó, ta suy ra AH vuông góc với BC.

b) Ta có:
- Gọi K là điểm đối xứng của H qua I.
- Vì I là trung điểm của BC nên IK // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Vì K là điểm đối xứng của H qua I nên HK = HI.
- Ta có: AH = 2IK (vì I là trung điểm của BC và K là điểm đối xứng của H qua I).
- Vì CK // BD (vì CK và BD đều vuông góc với BC và đi qua điểm H) nên tam giác CKD và tam giác BHD là hai tam giác đồng dạng.
- Do đó, ta có: CK/BD = DK/DH.
- Nhưng CK = BD (vì CK // BD) nên DK = DH.
- Vậy, ta có: DK = DH.
- Từ đó, ta suy ra tam giác ABK vuông.

c) Ta có:
- Gọi N là trung điểm của AB.
- Vì I là trung điểm của BC nên IN // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Ta có: AN = NB (vì N là trung điểm của AB).
- Vì IN // AH và AN = NB nên tam giác INB và tam giác AHM là hai tam giác đồng dạng.
- Do đó, ta có: ∠INB = ∠AHM.
- Nhưng ∠INB = 90° (vì IN vuông góc với AB).
- Vậy, ta có: ∠AHM = 90°.
- Từ đó, ta suy ra AH vuông góc với BM.
- Nhưng BM = MC (vì M là trung điểm của AC).
- Vậy, ta có: AH vuông góc với MC.
- Từ đó, ta suy ra tam giác BEA vuông.

d) Ta có:
- Gọi N là trung điểm của AB.
- Vì I là trung điểm của BC nên IN // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Ta có: AN = NB (vì N là trung điểm của AB).
- Vì IN // AH và AN = NB nên tam giác INB và tam giác AHM là hai tam giác đồng dạng.
- Do đó, ta có: ∠INB = ∠AHM.
- Nhưng ∠INB = 90° (vì IN vuông góc với AB).
- Vậy, ta có: ∠AHM = 90°.
- Từ đó, ta suy ra AH vuông góc với BM.
- Nhưng BM = MC (vì M là trung điểm của AC).
- Vậy, ta có: AH vuông góc với MC.
- Gọi D' là điểm đối xứng của D qua M.
- Ta có: MD' = MD (vì D' là điểm đối xứng của D qua M).
- Vì MD' vuông góc với BC và MD vuông góc với BC nên tam giác MBD' và tam giác MCD là hai tam giác vuông cân.
- Do đó, ta có: MB = MD' và MC = MD.
- Từ đó, ta suy ra MB.MC = MD.MD' = MD^2.
- Nhưng MD^2 = DC^2 - MC^2 (theo định lí Pythagoras).
- Vậy, ta có: MB.MC = DC^2 - MC^2.

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và ea) chứng minh tứ giác bdmc, adhm...
Đọc tiếp

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

0
10 tháng 12 2021

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Bài 1: 

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

AE=AD

AF=AD

Do đó: AE=AF

b: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN

4 tháng 8 2018

Hãy tích cho tui đi

Nếu bạn tích tui

Tui không tích lại đâu

THANKS

Bài 1: 

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

AE=AD

AF=AD

Do đó: AE=AF

b: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN