K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Ta có :

TH1 : \(x< -4;\)ta có :

\(Q=\left[-\left(x-3\right)\right]+\left[-\left(x+4\right)\right]+x-5\)

\(=3-x-x-4+x-5\)

\(=-6-x\)

TH2 : \(-4\le x< 3;\)ta có :

\(Q=\left[-\left(x-3\right)\right]+\left(4-x\right)+x-5\)

\(=3-x+4-x+x-5\)

\(=2-x\)

TH3 : \(x\ge3;\)ta có :

\(Q=\left(x-3\right)+\left(4+x\right)+x-5\)

\(=x-3+4+x+x-5\)

\(=3x-4\)

20 tháng 4 2020

\(Q=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)

\(\Leftrightarrow\) \(Q=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(2-x\right)}+\frac{5}{\left(x+3\right)\left(2-x\right)}+\frac{-1}{\left(x+3\right)\left(2-x\right)}\)

\(\Rightarrow\) \(Q=\left(x-2\right)\left(x+2\right)+5-1\)

\(\Leftrightarrow\) \(Q=x^2-4+5-1\)

\(\Leftrightarrow\) \(Q=x^2\)

Thay \(Q=\frac{-3}{4}\) ta được:

\(x^2=\frac{-3}{4}\)

\(\frac{-3}{4}>0\forall x\)

\(\Rightarrow\) Pt vô nghiệm

Vậy không có giả trị nào của x thỏa mãn \(Q=\frac{-3}{4}\)

Chúc bn học tốt!!

20 tháng 4 2020

cảm ơn nhiều nha

25 tháng 6 2018

\(\frac{x^3.x-y^3.y}{y^3.x^3}\)= x.y

25 tháng 6 2018

\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2\right)^2-\left(y^2\right)^2}{\left(y-x\right)\left(y^2+xy+x^2\right)}=-\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=-\frac{\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)

30 tháng 4 2018

\(\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)

\(=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{1}{x-2}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-1\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-1\right)}=\dfrac{x-4}{x-1}\)

9 tháng 1 2016

Điều kiện : x>=0

\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)

\(=\sqrt{x}+1-\sqrt{x}=1\)

4 tháng 7 2015

đk: x>=0; x khác 3

a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)

22 tháng 2 2020

xin lỗi tớ ấn nhầm chỗ M=7 tớ làm lại rồi đó 

22 tháng 2 2020

ban tra loi het cac cau hoi phia tren kia ho minh dc ko?