S = 1 + 3 + 3^2 + 3^3 + 3^4 + ...... + 3^2019 + 3^2020 + 3 mũ 2021 + 3 mũ 2020 2 tìm chữ số tận cùng của S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\times2\times3\times...\times2020\times2021\)có chữ số tận cùng là \(0\)do trong tích đó có thừa số có chữ số tận cùng là \(0\).
\(1\times3\times5\times...\times2019\times2021\)có chữ số tận cùng là \(5\)do là tích các số lẻ, và trong đó có số có chữ số tận cùng là \(5\).
Do đó \(A=1\times2\times3\times...\times2020\times2021-1\times3\times5\times...\times2019\times2021\)có chữ số tận cùng là \(5\).
Bài 1:
\(S=1+3^2+3^4+...+3^{2020}\)
\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)
\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)
\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)
Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).
Bài 2:
\(A=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
Dễ thấy A chia hết cho 10 nên A có tận cùng là 0
còn 1x 3 x 5 x... x 2021 là một số lẻ và chia hết cho 5 nên có tận cùng là 5
S=1+3+32+33+...+320
3S=3+32+33+...+320+321
3S-S=321-1
2S=321-1
S=(321-1):2
Đặt S = 1+ 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 20 (1)
=> 3S = 3 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ... + 3 mũ 21 (2)
Lấy ( 2 ) trừ ( 1 ) vế theo vế , ta được :
3S - S = 3 mũ 21 - 1
2S = 3 mũ 21 - 1
S = ( 3 mũ 21 - 1 ) : 2
ĐÂY LÀ LỜI GIẢI CHI TIẾT HƠN NHA MẤY BẠN
BÀI CỦA BẠN KIA ĐÚNG RỒI NHA !!!!!!!
CHỈ LÀ MÌNH GIẢI CHI TIẾT CHO CÁC BẠN HIỂU HƠN THÔI !!!!!
THANKS NHIỀU
S= 5+52+53+...+52020+52021
5S=52+53+54+...+52021+52022
5S - S=4S=52022-5
Ta có: 4S+5=52022
=4S -5 +5 =52022
=> 4S=52022
S = 30+32+34+...+32008
9S = 32+34+36+...+32010
9S - S = (32+34+36+...+32010) - (30+32+34+...+32008)
8S = 32010 - 30
8S = 32010 - 1
S = (32010 - 1) : 8
\(=\left(3^{2008}.3^2-1\right):8\)
\(=\left[\left(3^4\right)^{502}.9-1\right]:8\)
\(=\left[\overline{\left(...1\right)}^{502}.9-1\right]:8\)
\(=\left[\overline{\left(...1\right)}.9-1\right]:8\)
\(=\left[\overline{\left(...9\right)}-1\right]:8\)
\(=\overline{\left(...8\right)}:8\)
\(=\overline{...1}\)
Vậy S có c/s tận cùng là 1
Tính tổng S
\(S=3^0+3^1+...+3^{2007}+3^{2008}=\frac{3^{2009}-1}{2}\)(1)
(1)cái này bạn chưa hiểu mình Hướng giải chi tiết Bài tính Tổng dãy số
\(3^{2009}=3.9^{2008}=3.9^{2.1004}=3.81^{1004}\Rightarrow\)Tận cùng là 3
\(\Rightarrow3^{2009}-1\)có tận cùng =2
\(\frac{3^{2009}-1}{2}\) tận cùng là 1 hoặc 6
S không chia hết cho 2=> S tận cùng là 1
-------------Cách khác -----ghép số hạng
Để ý có 3^2+3^0=9+1=10
=> ghép cắp từ lớn xuống
3^2008+3^2006=3^2006(3^2+1)=10.3^2006
3^2007+3^2005=3^2005(3^2+1)=10+3^2006
Cuối cùng còn con 3^0 lẻ
3^0=1=>S có tận cùng 1
S=5+52+53+...+52020+52021
5S=52+53+54+...+52022
5S-S=(5+52+53+...+52020+52021)-(52+53+54+...+52022)
4S=5-52022
S=(5-52022):4