Cho m,n là số tự nhiên. Chứng minh n và mn+ 4 là hai số nguyên tố cùng nhau. Biết rằng n là số lẻ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK :
gọi d là UC(m; m.n+4) nên
m⋮d ⇒ m.n⋮d
m.n⇒4⋮d
⇒m.n + 4 - m.n = 4⋮d⇒d = {1;2;4}
Do m lẻ => d lẻ => d=1 => m và m.n+4 nguyên tố cùng nhau
gọi d là UC(m; m.n+4) nên
\(m⋮d\Rightarrow m.n⋮d\)
\(m.n+4⋮d\)
\(\Rightarrow m.n+4-m.n=4⋮d\Rightarrow d=\left\{1;2;4\right\}\)
Do m lẻ => d lẻ => d=1 => m và m.n+4 nguyên tố cùng nhau
Gọi \(d=ƯCLN\left(m,mn+8\right)\)
\(\Rightarrow\begin{cases}m⋮d\\m.n+8⋮d\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}m.n⋮d\\m.n+8⋮d\end{cases}\)
\(\Rightarrow\left(m.n+8\right)-\left(m.n\right)⋮d\Rightarrow8⋮d\)
\(\Rightarrow d\in\left\{1;2;4;8\right\}\)
Mà : m là STN lẻ \(\Rightarrow d=1\RightarrowƯCLN\left(m,m.n+8\right)=1\)
Vậy m và m.n + 8 là hai số nguyên tố cùng nhau .
toan lop 6 dung hon lop 5 chua hoc den so nguyen to
chua co ai cha loi cau hoi nay khong copy duoc xin loi nguyenvanhoang nhe .hen gap lai o bai sau.
Ta có: m và mn+8 là hai số nguyên tố cùng nhau.mn+8 thuộc Ư(8) mà Ư(8)={1,2,4,8}.Vì m là số lẻ nên m=1 và n là số tự nhiên nên n= 2,3,4.Nếu m=1,n=2;m=1,n=4;m=1,n=8 thì ƯCLN của chúng là 1.Nên m và mn+8 là hai số nguyên tố cùng nhau.
.
Nếu \(n=1\)hiển nhiên ta có đpcm.
Nếu \(n>1\):
Có \(mn⋮n\)mà \(4⋮̸n\)(do \(n\)lẻ) nên \(\left(n,mn+4\right)=1\).