K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

a) Gọi \(d\)là ước chung của \(n+3;n+4\)

\(\Rightarrow n+3⋮d\)và \(n+4⋮d\)

\(\Rightarrow n+3-\left(n+4\right)⋮d\)

\(\Rightarrow n+3-n-4⋮d\)

\(\Rightarrow-1⋮d\Rightarrow d=-1;1\)

Tử và mẫu chỉ có ước chung là -1;1 nên phân số \(\frac{n+3}{n+4}\)là phân số tối giản (đpcm)

DD
14 tháng 5 2021

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

DD
14 tháng 5 2021

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

27 tháng 4 2016

Gọi d là ước chung của 2n+1 và 3n+2

Khi đó: 2n+1 chia hết cho d=>6n+3 chia hết cho d

           3n+2 chia hết cho d=>6n+4 chia hết cho d

=>(6n+4)-(6n+3) chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

Vậy phân số 2n+1/3n+2 là phân số tối giản

27 tháng 4 2016

Gọi ƯC(2n+1;3n+2)=d

Có:2n+1 chia hết d=>3(2n+1)=6n+3 chia hết d.  (1)

3n+2 chia hết d=>2(3n+2)=6n+4 chia hết d.    (2)

Từ (1);(2)​=>(6n+4)-(6n+3) chia hết d

=>6n+4-6n-3 chia hết d

=>1 chia hết d

=>d={+-1}

=ƯC(3n+2;2n+1)={+-1}

Vậy A là phân số tối giản

4 tháng 2 2018

a) Gọi ƯC(2n+1,4n+6) = d ( d thuộc Z)

Suy ra 2n+1 chia hết cho d

            4n+6 chia hết cho d

Suy ra 2(2n+1) chia hết cho d hay 4n+ 2 chia hết cho d

Suy ra 4n+ 6 - 4n - 2 chia hết cho d hay 4 chia hết cho d

Suy ra d thuộc {1;-1;2-2;4;-4}

Mà 2n + 1 không chia hết cho 2 và -2 nên d khác 2 và -2

      4n+6 không chia hết cho 4 và -4 nên d khác 4 và -4

Suy ra d chỉ có thể là 1 và -1

Vậy 2n+1/4n+6 là phân số tối giản với mọi n

b)CÓ LẼ SAI ĐẦU BÀI

6 tháng 3 2022
Câu b sai đề á .Phải là20n +/15n- 2 chứ
21 tháng 2 2016

a ) Gọi d là ƯC ( 15n + 1 ; 30n + 1 )

=> 15n + 1 ⋮ d => 2.( 15n + 1 ) ⋮ d => 30n + 2 ⋮ d

=> 30n + 1 ⋮ d => 1.( 30n + 1 ) ⋮ d => 30n + 1 ⋮ d

=> [ ( 30n + 2 ) - ( 30n + 1 ) ] ⋮ d

=> 1 ⋮ d => d = 1 

Vì ƯC ( 15n + 1 ; 30n + 1 ) = 1 nên 15n+1/30n+1 là p/s tối giản

21 tháng 2 2016

a)Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*) 
=> 15n + 1 chia hết cho d 
30n + 1 chia hết cho d 
=> 2(15n + 1) chia hết cho d 
1(30n + 1) chia hết cho d 
=> 30n + 2 chia hết cho d 
30n + 1 chia hết cho d 
=>(30n + 2) - (30n + 1) chia hết cho d 
=> 1 chia hết cho d 
Do d thuộc N* 
=> d=1 
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1 
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau 
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh) 
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi

21 tháng 2 2016
a) 15n + 1/ 30n + 1 goi ucln cua 15n + 1/ 30n +1 la d ={15n + 1 hcia het cho d 30n + 1 chia het cho d 15n + 1 chia het cho d suy ra 4 (15n+ 1) chia het cho d (1) 30n +1 chia het cho d suy ra 2 ( 30n +1 ) (2) tu (1) va (2) theo t/c chia het mot hieu ta co 4(15n + 1)- 2(30n+1)chia het cho d 60n -4 - 60n - 2chia het cho d suy ra 1 chia het cho d suy ra d=1 vay d=1 nen UCLN( 15n +1, 30n +1) =1 vay phan so do la phan so toi gian
28 tháng 3 2018

Gọi d là ƯCLN của 2n + 1 và 3 n + 2

Ta có

2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )

Từ (1), (2)

=> 6n+4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=>  ƯCLN ( 2n + 1 : 3n + 2 ) = 1

=>  Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z 

28 tháng 3 2018

Phương pháp chứng minh 1 p/s tối giản là :

Chứng minh ƯCLN của tử và mẫu = 1

Còn cách làm : Tự làm

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.