cho tam giác ABC,trung tuyến AK,CL.gọi P là điểm bất kì trên AC.Kẻ đương thẳng //AK,CL qua P cắt BC tại E,AB tại F.CMR:AK,CL chia EF làm ba phần bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi Q là giao điểm của PF và AK ,I là giao điểm của PE và CL
Trong △ FPE ta có: PE//AK hay QM //PE
Suy ra: (định lí ta-lét) (1)
Trong △ ALO ta có:PF //CL hay FQ //LO
Suy ra: (định lí ta-lét) (2)
Trong △ ALC ta có: PF // CL
Suy ra: (định lí ta-lét) (3)
Từ (2) và (3) suy ra:
Vì LO = 1/3 CL (O giao điểm của hai đường trung tuyến) nên (4)
Từ (1) và (4) suy ra: ⇒ FM = 1/3 FE
Trong △ EPF ta có:PF // CL hay NI // PF
Suy ra: (định lí ta –lét) (5)
Trong △ CKO ta có: EI // OK
Suy ra: (định lí ta –lét) (6)
Trong △ CKA ta có:PE // AK
Suy ra: (định lí ta –lét) (7)
Từ (6) và (7) suy ra:
Vì OK = 1/3 AK (O là giao điểm của hai đường trung tuyến) nên (8)
Từ (5) và (8) suy ra: ⇒EN = 1/3 EF
Ta có: MN = EF - (EN + FM) = EF - (1/3 EF + 1/3 EF) = 1/3 EF
Vậy EN = MN = NF
Gọi H là giao của PF và AK, I là giao của PE và CN
Xét ΔFPE có PE//AK
=>HM//PE
=>FH/FB=FM/FE
Xét ΔANO có PF//CN
=>FH//NO
=>AF/AN=FH/NO
ΔALC có PF//CN
nên AF/AN=FP/CN
=>FH/NO=FP/CN
=>FH/EP=NO/CN
NO=1/3CN
nên FH/FP=1/3
=>FM/FE=1/3
=>FM=1/3FE
PF//CN
=>QI//PF
=>EI/EP=EQ/EF
EI//OK
=>CE/CK=EI/KO
PE//AK
=>CE/CK=EP/AK
=>EI/OK=EP/AK
=>EI/EP=OK/AK=1/3
=>EQ=1/3EF
=>FM=MQ=QE