so sanh A va B:A=(20^2004+11^2004)^2005 va B = (20^2005+11^2005)^2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2003/2004 + 2004/2005 + 2005/2003
= 1 - 1/2004 + 1 - 1/2005 + 1 + 1/2003 + 1/2003
=(1+1+1)-(1/2004 - 1/2003 + 1/2005 - 1/2003)
= 3 - (1/2004 - 1/2003 + 1/2005 - 1/2003)
Vì 1/2004 < 1/2003 ; 1/2005 < 1/2003
=>1/2004 - 1/2003 + 1/2005 - 1/2003 < 0
=> 3 - (...) > 3
Vậy. ...
K mình nha
\(\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}=1-\frac{1}{2004}+1-\frac{1}{2005}+1+\frac{2}{2003}\)
\(=3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)\)
Do \(\frac{1}{2003}>\frac{1}{2004}>\frac{1}{2005}.\) nên \(\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>0\)
Vì vậy \(3+\left(\frac{1}{2003}-\frac{1}{2004}\right)+\left(\frac{1}{2003}-\frac{1}{2005}\right)>3\) (đpcm)
\(A=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}\)
\(=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})\)
\(=3+(\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005})\)
Do\(\frac{1}{2003}\)>\(\frac{1}{2004}\)>\(\frac{1}{2005}\)
\(\Rightarrow\frac{1}{2003}+\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\)>\(0\)
\(\Rightarrow3+(\frac{1}{2003}-\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2005})\)>\(3\)
\(\Rightarrow A\)>\(3\)
ta có : chia a và b lần lượt chia cho (20^2004)^2005 và (20^2005)^2004
ta được (1+11/20^2005)^2004 và (1+11/20^2004)^2005
có:(1+11/20^2004)^2005> (1+11/20^2004)^2004 (vì 1+11/20^2004>1)
lại có : 11/20>1
nên 11/20^2004 >11/20^2005
nên(1+11/20^2004)^2004> (1+11/20^2005)^2004
mà(1+11/20^2004)^2005> (1+11/20^2004)^2004
nên (1+11/20^2004)^2005>(1+11/20^2005)^2004
VẬY a>b