một lớp học có 40 học sinh được sắp xếp ngồi đều nhau trên các ghế băng. Nếu ta bớt đi 2 ghế băng thì mỗi ghế còn lại phải xếp thêm 1 học sinh . tính số ghế băng lúc đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phan Minh Anh
Gọi x là số ghế băng ban đầu (x thuôc N*)
Suy ra số học sinh ở mỗi ghế băng là 40:x
Nếu bớt đi 2 ghế băng (x-2) thì mỗi ghế còn lại phải xếp thêm 1 hs (x+1)
Hay (x-2).(x+1) =40
<=> x2 -2x -80 =0
<=> x=10
Vậy số ghế băng ban đầu là 10 ghế
Gọi số ghế băng lúc đầu là x ( ghế băng), ( x∈N*, x> 2)
Số học sinh ngồi trên mỗi ghế là ( học sinh ) .
Khi bớt đi 2 ghế băng thì còn lại x- 2 ( ghế băng ) và khi đó, mỗi ghế có học sinh ngồi.
Theo giả thiết, nếu ta bớt đi 2 ghế băng thì mỗi ghế còn lại phải xếp thêm 1 học sinh nên ta có phương trình:
⇔ 40 x − x ( x − 2 ) = 40 ( x − 2 ) ⇔ 40 x − x 2 + 2 x = 40 x − 80 ⇔ − x 2 + 2 x + 80 = 0
Có a = -1, b= 2; c = 80 và ∆ = 2 2 – 4 . ( - 1 ) . 80 = 324
Nên phương trình trên có 2 nghiệm là: x1 = -8 ( loại) và x2 =10 ( thỏa mãn)
Vậy lúc đầu có 10 ghế băng.
Gọi số ghế băng lúc đầu là x ( ghế băng), ( x∈N*, x> 2)
Số học sinh ngồi trên mỗi ghế là ( học sinh ) .
Khi bớt đi 2 ghế băng thì còn lại x- 2 ( ghế băng ) và khi đó, mỗi ghế có học sinh ngồi.
Theo giả thiết, nếu ta bớt đi 2 ghế băng thì mỗi ghế còn lại phải xếp thêm 1 học sinh nên ta có phương trình:
⇔ 40 x − x ( x − 2 ) = 40 ( x − 2 ) ⇔ 40 x − x 2 + 2 x = 40 x − 80 ⇔ − x 2 + 2 x + 80 = 0
Có a = -1, b= 2; c = 80 và ∆ = 2 2 – 4 . ( - 1 ) . 80 = 324
Nên phương trình trên có 2 nghiệm là: x1 = -8 ( loại) và x2 =10 ( thỏa mãn)
Vậy lúc đầu có 10 ghế băng.
Gọi số ghế băng ban đầu là x(ghế)(x thuộc N*).
số học sinh/ghế là 40/x(học sinh).
số ghế khi bớt đi là : x-2(ghế)
số học sinh/ghế khi bớt ghế là : 40/x-2 (học sinh)
Do khi bớt đi 2 ghế ,số học sinh phải thêm 1 vào mỗi hàng nên ta có pt sau:
40/x-2 - 40/x = 1
<=>40x/x(x-2) - 40(x-2 ) /x(x-2) = x(x-2)/x(x-2)
==>40x - 40 (x-2) =x(x-2)
<=> 40x - 40x + 80 = x2 - 2x
<=> x2 - 2x - 80 = 0
Giải đenta ' ta có: đenta ' = (-1)2 - 1(-80)=1 + 80 = 81>0
==>Phương trình có hai nghiệm phân biệt
x1 =(-b' + 9)/a=(1 + 9 )/1=10.(thỏa mãn)
x2 =(-b' - 9)/a =( 1 - 9)/1 = -8(loại).
Vậy số ghế băng ban đầu là 10 ghế.
Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]
=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)
Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2
Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)
Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)
=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a
=> 35a-70+2a\(^2\)-4a=35a
=> 2a\(^2\)-4a-70=0
=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp
Trường hợp 1 : a-1 = -6 => a = - 5 [loại]
Trường hợp 2 : a - 1 = 6 => a = 7
Còn đây bạn làm nốt tiếp
Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người
Gọi số chỗ ngồi ban đầu ở mỗi dãy là x
Theo đề, ta có: 80/x+2=80/x-2
=>80/(x+2)-80/x=-2
=>\(\dfrac{80x-80x-160}{x\left(x+2\right)}=-2\)
=>x^2+2x-80=0
=>x=8