K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 6^2+8^2=10cm

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

góc ABK=góc HBK

=>ΔBAK=ΔBHK

c: Xét ΔKAI vuông tại A và ΔKHC vuông tại H có

KA=KH

AI=HC

=>ΔKAI=ΔKHC

=>góc AKI=góc HKC

=>góc AKI+góc AKH=180 độ

=>I,K,H thẳng hàng

d: Xét ΔBIC có BA/AI=BH/HC

nên AH//IC

a: BC=10cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chug

\(\widehat{ABK}=\widehat{HBK}\)

Do đó: ΔBAK=ΔBHK

c: Xét ΔAKI vuông tại A và ΔHKC vuông tại H có

KA=KH

AI=HC

Do đó: ΔAKI=ΔHKC

Suy ra: \(\widehat{AKI}=\widehat{HKC}\)

=>\(\widehat{AKI}+\widehat{AKH}=180^0\)

hay I,H,K thẳng hàng

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

DO đó: ΔBAD=ΔBED

Suy ra: BA=BE

hay ΔBAE cân tại B

a: BC=10cm

b: Xét ΔABK vuông tại A và ΔHBK vuông tại H có

BK chung

\(\widehat{ABK}=\widehat{HBK}\)

Do đó: ΔABK=ΔHBK

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có

BK chung

góc ABK=góc IBK

=>ΔBAK=ΔBIK

=>KA=KI

c: góc DAI+góc BIA=90 độ

góc CAI+góc BAI=90 độ

mà góc BIA=góc BAI

nên góc DAI=góc CAI

=>AI là phân giác của góc DAC

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔIMA vuông tại M và ΔIMC vuông tại M có

IM chung

MA=MC

Do đó; ΔIMA=ΔIMC

c: Xét ΔCAB có 

M là trung điểm của AC

MI//AB

Do đó: I là trung điểm của BC

Ta có: ΔABC vuông tại A

mà AI là đường trung tuyến

nên AI=BC/2

16 tháng 4 2022

cảm ơn bạn yêu nhé

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)

c) Ta có: ΔADH vuông tại H(gt)

nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)

Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔBAD cân tại B(Định lí đảo của tam giác cân)

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: Sửa đề: vuônggóc BC, cắt AC tại H

Xet ΔCDH vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDH đồng dạng với ΔCAB

c: BD/DC=AB/AC=4/3

4 tháng 5 2022

db

 

 

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !