K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

Có : P = n2 + 2017n = n2 - n + 2028n 

Vì 2028n \(⋮12\forall n\)(*) 

=> P \(⋮12\Leftrightarrow n^2-n⋮12\)

Vì n chính phương => Đặt n = m2

Khi đó n2 - n = n(n - 1) = m2(m2 - 1) = m2(m - 1)(m + 1) 

= m(m - 1)(m + 1)(m - 2 + 2)

= (m - 2)(m - 1)m(m + 1) + 2m(m - 1)(m + 1)

Dễ thấy (m - 2)(m - 1)m(m + 1) \(⋮4\)(tích 4 số tự nhiên liên tiếp) (1) 

(m - 2)(m - 1)m(m + 1) \(⋮3\) (tích 3 số nguyên liên tiếp) (2) 

mà (4 ; 3) = 1 (3)

Từ (1) ; (2) ; (3) => (m - 2)(m - 1)m(m + 1) \(⋮4.3=12\)(4)

Lại có (m - 1)m(m + 1) \(⋮6\) (cùng chia hết cho 2 ; 3) 

=> 2(m - 1)m(m + 1) \(⋮12\) (5) 

Từ (4) ; (5) ; (*) => P \(⋮12\)

15 tháng 1 2015

Ta có: 3x-4y 

          = x-6y+6y-+4y

          = 3.(x+2y)-10y

Mà: 10 chia hết cho 5 => 10y chia hết cho 5

       3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)

Ta có: x+2y

          =x+2y+5x-10y-5x+10y

          = 6x-8y-5.(x+2y)

Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5

      2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)

Từ (1) và (2) => x+2y <=> 3x -4y

Vậy ; x+2y <=> 3x-4y

 

5 tháng 10 2015

ban gioi wa.cam on

 

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

6 tháng 3 2020

a, 3n + 2 - 2n + 2 + 3n - 2n

= 3n(32 + 1) - 2n(22 + 1)

= 10.3n - 5.2n

= 10.3n - 10.2n - 1

= 10(3n - 2n - 1) chia hết cho 10

b, S = abc + bca + cab

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 11c

= 111(a + b + c)

= 3.37(a+b+c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên 

=> 3(a + b + c) chia hết cho 37

=> a + b + c chia hết cho 37

vì a;b;c là chữ số => a + b + c lớn nhất = 27

=> vô lí

vậy S không là số chính phương

6 tháng 3 2020

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(3^{n+2}+3^n-2^n-2^{n+2}\)

=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)

\(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)

\(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)

=\(3^n.10-2^{n-1}.5.2\)

\(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10

suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

NV
20 tháng 6 2021

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\) (đpcm)

10 tháng 3 2019

Ta có: 11^n+2+12^2n+1=121*11^12*144^n
=(133-12)*11^n+12*144^n

=133*11^n+12(144^n-11^n)

Ta có:133*11^n chia hết cho 133

144^n -11^n chia hết 133

Suy ra 11^n+12^2n+1chia hết cho 133

1 tháng 8 2016
  • Với n = 1, ta có: 14 - 12 = 0 chia hết cho 12

Vậy đẳng thức đúng với n = 1.

  • Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:

\(k^4-k^2\) chia hết cho 12

  • Ta cần chứng minh mệnh đề đúng với n = k + 1.

Ta có:

(k + 1)4 - (k + 1)2

\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)

\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12

Vậy đẳng thức đúng với n = k + 1.

Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.

P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^