K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

https://olm.vn/hoi-dap/detail/8596118254.html

tham khảo

17 tháng 9 2020

Với a,b,c,d là các số nguyên dương ta luôn có :

\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

Cộng vế với vế ta được :

\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)

Do đó , S không là số tự nhiên.

20 tháng 9 2020

\(\frac{d}{ưưda}ư\)

NM
18 tháng 3 2022

ta có bất đẳng thức sau : 

\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)

tương tự ta sẽ có 

\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên

28 tháng 8 2018

ban vào link này nhé 

https://olm.vn/hoi-dap/question/109536.html

29 tháng 7 2020

cái này mà là của lớp 3 à. Sao khó thế

cái này ít nhất cũng phải lớp 6 lớp 7

15 tháng 2 2020

Đặt  \(S=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

Ta có: \(\frac{a}{a+b+c}< \frac{a}{a+c}\)

\(\frac{b}{b+c+d}< \frac{b}{b+d}\)

\(\frac{c}{c+d+a}< \frac{c}{a+c}\)

\(\frac{d}{d+a+b}< \frac{d}{d+b}\)

\(\Rightarrow S< \left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+d}+\frac{d}{d+b}\right)\)

\(\Rightarrow S< 2\left(1\right)\)

Lại có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{b+c+a+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow S>1\left(2\right)\)

Từ (1) và (2) \(\Rightarrowđpcm\)

15 tháng 2 2020

nhanh the

DD
13 tháng 7 2021

Ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)

\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(=\frac{a+b+c+d}{a+b+c+d}=1\)

Tương tự ta cũng chứng minh được \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}>1\)

mà \(\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\right)+\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}\right)\)

\(=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)là số nguyên 

do đó \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)

\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)(vì \(a\ne c\))

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\)(vì \(b\ne d\))

Khi đó \(abcd=ac.ac=\left(ac\right)^2\)là số chính phương. 

7 tháng 4 2017

Thay \(a+b+c\) vào \(A\) ta được:

\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)

\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)

Ta có:

\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng vế với vế ta được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow A< 2\left(1\right)\)

Lại có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng vế với vế ta lại được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow A>1\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)

Vậy \(A\) không phải là số nguyên (Đpcm)

7 tháng 4 2017

cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui 

Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\) 

suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)

=> A > 1