K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^3+2x-3\)

\(=x^3-x+3x-3\)

\(=x\left(x^2-1\right)+3\left(x-1\right)\)

\(=x\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x\left(x+1\right)+3\right)\)

\(x^3+5x^2+8x+4\)

\(=\left(x+1\right)\left(x+2\right)\)

Cây cuối tương tự câu đầu thôi:

 \(x^3-7x+6\)

\(=x^3-x-6x+6\)

.......

11 tháng 10 2021

\(\left(x-2\right)\left(x^2-2x+4\right)\)

11 tháng 10 2021

x3−4x2−8x+8x3−4x2−8x+8

=x3+2x2−6x2−12x+4x+8=x3+2x2−6x2−12x+4x+8

=x2.(x+2)−6x.(x+2)+4.(x+2)=x2.(x+2)−6x.(x+2)+4.(x+2)

=(x+2).(x2−6x+4)

11 tháng 11 2021

12.C

13.C

11 tháng 10 2021

a: \(x^2-y^2-x-y\)

\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

f: \(x^3-5x^2-5x+1\)

\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+1\right)\)

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2

2 tháng 12 2021

\(=x^3-x+7x+7=x\left(x-1\right)\left(x+1\right)+7\left(x+1\right)\\ =\left(x+1\right)\left(x^2-x+7\right)\)

6 tháng 8 2023

\(\text{x^3 – 5x^2 + 8x – 4 }\)

\(\text{= x^3 – 4x^2 + 4x – x^2 + 4x – 4}\)

\(\text{= x( x^2 – 4x + 4 ) – ( x^2 – 4x + 4 )}\)

\(\text{= ( x – 1 ) ( x – 2 )^2}\)

6 tháng 8 2023

\(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x-4\\ =x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\\ =\left(x^2-4x+4\right)\left(x-1\right)\\ =\left(x-2\right)^2\left(x-1\right)\)

3 tháng 10 2021

\(9a^3-13a+6=\left(9a^3-6a^2\right)+\left(6a^2-4a\right)-\left(9a-6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

3 tháng 10 2021

\(x^4-4x^3+8x+3=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(5x^2+5x\right)+\left(3x+3\right)=x^3\left(x+1\right)-5x^2\left(x+1\right)+5x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x^3-5x^2+5x+3\right)=\left(x+1\right)\left[\left(x^3-3x^2\right)-\left(2x^2-6x\right)-\left(x-3\right)\right]=\left(x+1\right)\left(x-3\right)\left(x^2-2x-1\right)\)

Sửa đề: x^3+6x^2+11x+6

=x^3+x^2+5x^2+5x+6x+6

=(x+1)(x^2+5x+6)

=(x+1)(x+2)(x+3)

\(A=x^2-y^2+7x+7y\)

\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+7\right)\)

\(B=4x^3-4x^2+x\)

\(=x\left(4x^2-4x+1\right)\)

\(=x\left(2x-1\right)^2\)

\(C=x^2-6xy+9y^2-9\)

\(=\left(x-3y\right)^2-9\)

\(=\left(x-3y-3\right)\left(x-3y+3\right)\)

26 tháng 8 2021

A=\(x^2+7x+7y-y^2=\left(x^2-y^2\right)+\left(7x+7y\right)=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)=\left(x+y\right)\left(x-y+7\right)\)

B=\(4x^3-4x^2+x=x\left(4x^2-4x+1\right)=x\left(2x-1\right)^2\)

C=\(x^2+9y^2-9-6xy=\left(x^2-6xy+9y^2\right)-9=\left(x-3y\right)^2-3^2=\left(x-3y-3\right)\left(x-3y+3\right)\)