cho hình bình hành ABCD (góc B<90 độ ) ở phía ngoài hình bình hành vẻ các tam giác vuông cân tại B là ABE và CBF
a. chứng minh DB=È
b. DB vuông góc với EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 10:
góc A=180-130=50 độ
góc B=(180+50)/2=230/2=115 độ
góc C=180-115=65 độ
\(\widehat{A}=\widehat{C}=135^0\)
\(\widehat{B}=\widehat{D}=45^0\)
a: Xét ΔMEA và ΔMCB có
góc EMA=góc CMB
MA=MB
góc MEA=góc MCB
=>ΔMEA=ΔMCB
=>ME=MC
=>M là trung điểm của CE
Xét tứ giác AEBC có
M là trung điểm chung của AB và EC
=>AEBC là hbh
b: Để AEBC là hình chữ nhật thì góc EAC=90 độ
=>góc DAC=90 độ
=>góc ACD+góc D=90 độ
mà góc ACD=1/2*góc D
nên góc D=2/3*90=60 độ
=>góc B=60 độ
góc BAD=góc BCD=180-60=120 độ
Ta có: \(\widehat{DEA}=\widehat{EDC}\)(hai góc so le trong, AE//DC)
mà \(\widehat{EDC}=\widehat{ADE}\)(DE là tia phân giác của \(\widehat{ADC}\))
nên \(\widehat{ADE}=\widehat{AED}\)
Xét ΔAED có \(\widehat{ADE}=\widehat{AED}\)(cmt)
nên ΔAED cân tại A(Định lí đảo của tam giác cân)
Suy ra: AD=AE(đpcm)