Cho a , b > 0 thỏa mãn 4 a + b + căn ab=1 . Tìm GTNN 1/ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
ab+bc+ca = 4abc
<=> 1/a + 1/b + 1/c = 4
Áp dụng bđt : x^2+y^2+z^2 >= (x+y+z)^2/3 thì :
P >= 1/a^2+1/b^2+1/c^2)^2 /3
>= [(1/a+1/b+1/c)^2/3]^2/3
= [(4^2)/3^]2/3 = 256/27
Dấu "=" xảy ra <=> a=b=c=3/4
Vậy ........
Tk mk nha
Ta có:\(A\ge\left(a+b+1\right)\frac{\left(a+b\right)^2}{2}+\frac{4}{a+b}\)
Đặt \(t=a+b\)thì \(t\ge2\) theo AM-GM
Ta có:\(A\ge\frac{t^3}{2}+\frac{t^2}{2}+\frac{4}{t}=\frac{t^3}{2}+\frac{t^2}{4}+\frac{t^2}{4}+\frac{2}{t}+\frac{2}{t}\ge4+1+3=8\)
Đẳng thức xảy ra khi \(a=b=1\)
Đầu tiên,ta chứng minh BĐT phụ \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\frac{\left(x+y\right)^2-4xy}{2}\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng).Dấu "=" xảy ra khi x = y.
Và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Áp dụng BĐT AM-GM(Cô si),ta có; \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\left(x+y\right)}{2}}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi x = y
\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}\ge4+\frac{1}{\frac{1}{2}}=6\)
Dấu "=" xảy ra khi a = b và a + b = 1 tức là a=b=1/2
Vậy Min P = 6 khi a = b = 1/2
\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)
\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)
\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
$ab+bc+ca=3$. CMR: $\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\geqslant \frac{3}{2}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
mình quỳ bạn luôn Nhân Thiên Hoàng ạ kiệt lên mạng hỏi mà mày lại bảo vậy thì thua luôn
Ta có: \(1=4\left(a+b\right)+\sqrt{ab}\ge4.2\sqrt{ab}+\sqrt{ab}=9\sqrt{ab}\Leftrightarrow\sqrt{ab}\le\dfrac{1}{9}\Leftrightarrow ab\le\dfrac{1}{81}\)
\(\Rightarrow\dfrac{1}{ab}\ge\dfrac{1}{\dfrac{1}{81}}=81\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\dfrac{1}{9}\)