K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

20 tháng 7 2015

x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9

(x+y+z)^2=9

x+y+z=3 hoặc x+y+z=-3

x(x+y+z)=x.3=-5 =>x=-5/3

Với x+y+z=-3 ta có x=5/3

Tương tự ta cũng có y=3 hoặc y=-3, z=5/3 hoặc z=-5/3

5 tháng 9 2017

Ta có:(x+y):(5-z):(y+z):(y+9)=3:1:2:5

=> 5-z=1=>z=4.

    y+9=5=>y=-4.

   x+y=3=>x-4=3(do y=-4)=>x=7.

Vậy x=7,y=-4,z=4.

28 tháng 2 2020

Ta có \(x+y+z=0\)

         \(\Rightarrow y+z=-x\)

          \(\Rightarrow\left(y+z\right)^2=x^2\)

          \(\Rightarrow y^2+z^2-x^2=-2yz\)

Chứng minh tương tự ta có : \(x^2+y^2-z^2=-2xy;x^2+z^2-y^2=-2zx\)

\(\Rightarrow M=\frac{-1}{2yz}+\frac{-1}{2xy}+\frac{-1}{2xz}=\frac{-x-y-z}{2xyz}\)

cái này mình không chắc nha

13 tháng 2 2016

(x)/(z+y+1)=(y)/(x+z+1)=(z)/(x+y-2)=x+y+... 
Khi đó 1/2=x+y+z=x/(3/2-x)=y/(3/2-y)=z/(-z-3/2) suy ra x=y=1/2,z=-1/2.

13 tháng 2 2016

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2)