1.Tìm x biết :
(x+2)² +x(x-1) < 2x²+1
Giúp mình với,mình đang cần gấp ạ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)
\(\dfrac{1}{2}\) \(\times\) ( \(x\) - \(\dfrac{2}{3}\)) - \(\dfrac{1}{3}\) \(\times\) ( 2\(x\) - 3) = \(x\)
\(\dfrac{1}{2}\) \(\times\) \(\dfrac{3x-2}{3}\) - \(\dfrac{2x-3}{3}\) = \(x\)
\(\dfrac{3x-2}{6}\) - \(\dfrac{4x-6}{6}\) = \(\dfrac{6x}{6}\)
3\(x-2-4x\) + 6 = 6\(x\)
-\(x\) + 4 - 6\(x\) = 0
7\(x\) = 4
\(x\) = \(\dfrac{4}{7}\)
\(\left|x-3,2\right|+\left|2x-\frac{1}{5}\right|=x+3.\)
ĐK : \(x+3\ge0\Leftrightarrow x\ge-3\)
Th1 : \(x-3,2+2x-\frac{1}{5}=x+3\)
\(x-3,2+2x=x+\frac{16}{5}\)
\(x+2x=x+\frac{32}{5}\)
\(2x=\frac{32}{5}\)
\(\Leftrightarrow x=3,2\)(tm)
\(x-3,2+2x-\frac{1}{5}=3-x\)
\(x-3,2+2x=3-x+\frac{1}{5}\)
\(x-3,2+2x=\frac{16}{5}-x\)
\(x+2x=\frac{16}{5}-x+3,2\)
\(x+2x=\frac{32}{5}-x\)
\(2x=\frac{32}{5}-x-x\)
\(2x=\frac{32}{5}-2x\)
\(4x=\frac{32}{5}\)
\(x=1,6\)(tm)
Vậy \(x=1,6\)hoặc \(x=3,2\)
\(\left|x-3\right|-2x=1\left(đk:x\ge-\dfrac{1}{2}\right)\)
\(\Leftrightarrow\left|x-3\right|=1+2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1+2x\left(x\ge3\right)\\x-3=-1-2x\left(-\dfrac{1}{2}\le x< 3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)
a, \(\dfrac{a}{b}+\dfrac{2}{25}=1\Leftrightarrow\dfrac{a}{b}=1-\dfrac{2}{25}=\dfrac{23}{25}\)
b, \(\dfrac{a}{b}-\dfrac{5}{6}=1\Leftrightarrow\dfrac{a}{b}=1+\dfrac{5}{6}=\dfrac{11}{6}\)
\(2x\left(x-3\right)=x^2-3x\)
\(\Rightarrow2x\left(x-3\right)=x\left(x-3\right)\)
\(\Rightarrow2x=x\)
\(\Rightarrow x=0\)
(x+2)2 +x(x-1)<2x2+1
x2+4x+4+x2-x<2x2+1
3x+4<1
x< -1