1.
Cho S = 2^1 + 2^2 + 2^3 + ... + 2^100
Chứng minh rằng S chia hết cho 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 21+22+23+...+2100
S = (2+22+23+24) + (25+26+27+28) +.....+ (297+298+299+2100)
S = 2(1+2+22+23) + 25(1+2+22+23) +.....+ 297(1+2+22+23)
S = 2.15 + 25.15 +.....+ 297.15
S = 15.(2+25+...+297) chia hết cho 15
=> Đpcm
ta có :
`1^3` \(⋮\) `1`
\(2^3⋮2\)
\(3^3⋮3\)
.................
\(100^3⋮100\)
`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)
vậy `A` \(⋮\)`B`
S= (2+2^2+2^3+2^4) + .......+ (2^97+2^98+2^99+2^100) = 2.(1+2+2^2+2^3) + ........+2^97.(1+2+2^2+2^3)
= 2.15+........+2^97.15 = 15.(2+2^5+.........+2^97) * 15
Ta có : 2S = 2^2+2^3+2^4+.......+2^101
=> 2S-S = (2^2+2^3+2^4+.........+2^101) - (2+2^2+2^3+........+2^100) = 2^101 - 2 = S
vì 2^101-2 = 2^100.2-2 = (.....6) . 2 -2 = (.....2) - 2 = (......0)
vậy S có c/s tận cùng là 0
\(S=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{102}+2^{103}\right)=3.2^0+3.2^2+.....+2^{102}.3=3.\left(2^0+2^2+....+2^{102}\right)\)
Vậy S chia hết chp 3 (đpcm)