K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\cdot...\left(1+\dfrac{1}{2499}\right)\)

\(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot...\cdot\dfrac{2500}{2499}\)

\(=\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot...\cdot\dfrac{50\cdot50}{49\cdot51}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot50}{1\cdot2\cdot3\cdot...\cdot49}\cdot\dfrac{2\cdot3\cdot...\cdot50}{3\cdot4\cdot...\cdot51}\)

\(=\dfrac{50}{1}\cdot\dfrac{2}{51}=\dfrac{100}{51}\)

1 tháng 3 2023

\(C=\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{2499}\right)\)

\(C=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}...\dfrac{2500}{2499}\)

\(C=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}...\dfrac{50.50}{49.51}\)

\(C=\dfrac{2.2.3.3.4.4...50.50}{1.3.2.4.3.5...49.51}\)

\(C=\dfrac{2.3.4...50}{1.2.3...49}.\dfrac{2.3.4...50}{3.4.5...51}\)

\(C=50.\dfrac{2}{51}\)

\(C=\dfrac{100}{51}\)

4 tháng 10 2021

\(N=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\Rightarrow2N=2+1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow N=2N-N=2+1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}-1-\dfrac{1}{2}-...-\left(\dfrac{1}{2}\right)^{100}=2-\left(\dfrac{1}{2}\right)^{100}\)

4 tháng 10 2021

\(N=1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\)

\(\dfrac{1}{2}N-N=\left(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\right)\)

               \(-\left(1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\right)\)

\(-\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}-1\)

\(N=\dfrac{-\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}}{-\dfrac{1}{2}}\)

26 tháng 7 2021

A=\(\left[\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(a-1\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(a+\sqrt{a}\right)}{\left(a-1\right)}\right]\)::::::::\(\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)

=\(\left[\dfrac{1}{\sqrt{a}-1}\right]:\left(\dfrac{2\sqrt{a}}{a-1}\right)\)=\(\dfrac{\sqrt{a}-1}{2\sqrt{a}}\)

=\(\dfrac{a^2+a\sqrt{a}+11a+6}{2\sqrt{a}\left(\sqrt{a}+2\right)}\)

Ta có: \(A=\left(\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}:\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}-1}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\)

\(=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)

3 tháng 7 2023

a

ĐK: \(1< x\ne10\)

Đặt \(t=\sqrt{x-1}\Rightarrow x=t^2+1;0< t\ne3\)

Khi đó:

\(P=\left(\dfrac{t}{3+t}+\dfrac{t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t^2-3t}-\dfrac{1}{t}\right)\\ =\left(\dfrac{t\left(3-t\right)+t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t\left(t-3\right)}-\dfrac{1}{t}\right)\\ =\dfrac{3t+9}{\left(3-t\right)\left(3+t\right)}:\dfrac{3t+1-t+3}{t\left(t-3\right)}=\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}:\dfrac{2t+4}{t\left(t-3\right)}\\ =\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}.\dfrac{t\left(t-3\right)}{2t+4}=\dfrac{-3t}{2t+4}=\dfrac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)

b

Ta có:

\(x=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{5}+1\right)\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\left(\sqrt{5}+1\right)\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\sqrt{5}\left|1-\sqrt{2}\right|-\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\\ =\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)

Vậy \(P=\dfrac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\dfrac{1}{2}\)

Bài 1 : Rút gọn biểu thức                                                                                  a. A = \(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)        b. B = \(1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\)     2. Chứng minh đẳng thức...
Đọc tiếp

Bài 1 : Rút gọn biểu thức                                                                                  

a. A = \(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)        

b. B = \(1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\)     

2. Chứng minh đẳng thức :

a. \(\left(\dfrac{6a+1}{a^2-6a}+\dfrac{6a-1}{a^2+6a}\right).\dfrac{a^2-36}{a^2+1}=\dfrac{12}{a}\)

b.  \(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\right]=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

3. Chứng minh biểu thức không phụ thuộc vào biến :

a. A = \(\left(\dfrac{x}{x-y}-\dfrac{y}{x+y}\right):\left(\dfrac{x+y}{x-y}-\dfrac{2xy}{x^2-y^2}\right)\)

b. \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

 

 

0
Bài 1 : Rút gọn biểu thức                                                                                  a. A = \(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)        b. B = \(1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\)     2. Chứng minh đẳng thức...
Đọc tiếp

Bài 1 : Rút gọn biểu thức                                                                                  

a. A = \(\left(a-2\right):\left\{\dfrac{a^2-b^2}{a^3+b^3}.\left[a-\dfrac{a^2+b^2}{b}:\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\right]\right\}=\dfrac{a-2}{a}\)        

b. B = \(1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{x-1}\right)\)     

2. Chứng minh đẳng thức :

a. \(\left(\dfrac{6a+1}{a^2-6a}+\dfrac{6a-1}{a^2+6a}\right).\dfrac{a^2-36}{a^2+1}=\dfrac{12}{a}\)

b.  \(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\right]=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

3. Chứng minh biểu thức không phụ thuộc vào biến :

a. A = \(\left(\dfrac{x}{x-y}-\dfrac{y}{x+y}\right):\left(\dfrac{x+y}{x-y}-\dfrac{2xy}{x^2-y^2}\right)\)

b. \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

 

 

1
19 tháng 11 2021

Bài 3:

\(a,A=\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)\left(x+y\right)}:\dfrac{x^2+2xy+y^2-2xy}{\left(x-y\right)\left(x+y\right)}\\ A=\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x+y\right)}{x^2+y^2}=1\\ b,=\left[\dfrac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right]\left[\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\\ =\left(a+2\sqrt{a}+1\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\\ =\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1\)

NV
20 tháng 12 2020

\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)

\(=\dfrac{\left(ab+bc+ca\right)^2-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)

\(=\dfrac{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)

\(=2\left(a+b+c\right)\)