Cho tứ giác ABCD có góc B + D =180 và CB = CD . Trên tia đối tia DA lấy điểm E sao cho DE = AB . Chứng minh
a, tam giác ABC= tam gaisc EDC
b, AC là phân giác góc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé!
a, (Mk nghĩ đề là góc B+D=180o)
Xét tam giác ABC và EDC có:
AB=DE (gt)
DC=BC (gt)
góc EDC=ABC = (180o- ADC)
=> tam giác ABC=EDC (c.g.c)
b, Tam giác ABC=EDC => AC=EC
=> tam giác ACE cân tại C=> góc DAC=DEC (1)
Mặt khác hai tam giác trên bằng nhau => góc DEC=BAC (2)
Từ (1) và (2) => góc DAC=BAC
=> AC là pg góc A
ý a, là chứng minh tam giác ABC=tam giác EDC hả?
a,theo giả thiết thì \(\left\{{}\begin{matrix}\angle\left(B\right)+\angle\left(ADC\right)=180^0\\CB=CD,DE=AB\left(1\right)\end{matrix}\right.\)
mà \(\angle\left(EDC\right)+\angle\left(ADC\right)=180^0\)(kề bù)
\(=>\angle\left(B\right)=\angle\left(EDC\right)\)(2)
từ(1)(2)\(=>\Delta ABC=\Delta EDC\left(c.g.c\right)\)
b,do \(\Delta ABC=\Delta EDC\)(cminh tại ý a)\(=>AC=CE\)=>\(\Delta ACE\) cân tại C
\(=>\angle\left(CAD\right)=\angle\left(CED\right)\left(\right)\left(3\right)\)
do \(\Delta ABC=\Delta EDC=>\angle\left(BAC\right)=\angle\left(CED\right)\left(4\right)\)
(3)(4)\(=>\angle\left(CAD\right)=\angle\left(BAC\right)\)=>AC là phân giác góc A
Bài 1:
a,xét tam giác ABC và tam giác EDC có:
AB=DE(gt)
DC=DC(gt)
góc EDC=ABC=(180 độ-ADC)
=>tam giác ABC=EDC(c.g.c)
b,tam giác ABC=EDC
=.AC=EC
=>tam giác ACE cân tại C
=> góc DAC=DEC(1)
Mặt khác 2 tam giác trên bằng nhau
=>DAC=DEC(2)
Từ (1) và (2)=>DAC=BAC
=> góc AC là tia pg của A
---------------------------đợi mik nghiên cứu bài 2 đã chà nha học tốt---------------------------------
AB//CD=>A+B=180 độ (hai góc trong cùng phía)(1)
A-D=20 độ(2)
Lấy (1)+(2)=>A+D+A-D=180 độ +20=> 2A=200=>A=100 độ
A+B=180 độ=>D=180 độ=>D=180 -A=180-100=80 độ
AB//CD>B+C=180 độ (hai góc trong cùng phía)
Hay AC+C=180 độ=>3C=180 độ =>C=60 độ
B+C=180 độ=>B=180 -C=180-60=120 độ
--------------------------------------------học tốt-------------------------------
Bài 1:
a: Ta có: AB=AD
nên A nằm trên đường trung trực của BD(1)
Ta có: CB=CD
nên C nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AC là đường trung trực của BD
b: Xét ΔBAC và ΔDAC có
AB=AD
AC chung
BC=DC
Do đó: ΔBAC=ΔDAC
Suy ra: \(\widehat{B}=\widehat{D}\)
=>\(\widehat{B}=\widehat{D}=\dfrac{200^0}{2}=100^0\)
2: Xét tứ giác ABDE có
C là trung điểm của BE
C là trung điểm của AD
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
a, Ta có:
\(\widehat{ADC}+\widehat{ABC}=180^o\left(1\right)\)
\(\widehat{ADC}+\widehat{EDC}=180^o\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{EDC}\) (Cùng bù \(\widehat{ADC}\))
Ta xét hai tam giác ABC và EDC:
BC = DC (giả thiết)
AB = DE (giả thiết)
\(\widehat{ABC}=\widehat{EDC}\) (chứng minh trên)
\(\Rightarrow\Delta ABC=\Delta DEC\left(c.g.c\right)\)
b) Ta có: Tam giác ABC = tam giác EDC (chứng minh trên)
=> AC = EC (Hai cạnh tương ứng bằng nhau)
=> Tam giác AEC cân tại A
\(\Rightarrow\widehat{CAE}=\widehat{CEA}\left(3\right)\)
Ta có: \(\widehat{CEA}=\widehat{CAB}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\widehat{CAE}=\widehat{CAB}\)
=> AC là tia phân giác của \(\widehat{DAB}\)