x/2+x/6+x/12+....+x/90=9
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(f\left(x\right)-h\left(x\right)=g\left(x\right)\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(h\left(x\right)=\left(2x^4+5x^3-x+8\right)-\left(x^4-x^2-3x+9\right)\)
\(h\left(x\right)=2x^4+5x^3-x+8-x^4+x^2+3x-9\)
\(h\left(x\right)=3x^4+5x^3+x^2+2x-1\)
b \(h\left(x\right)-g\left(x\right)=f\left(x\right)\)
\(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(h\left(x\right)=2x^4+5x^3-x+8+x^4-x^2-3x+9\)
\(h\left(x\right)=3x^4+5x^3-x^2-4x+17\)
\(P=A\cdot B\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\cdot\dfrac{2\sqrt{x}+6+x-3\sqrt{x}+3-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)}\cdot\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}-3\right)^2}=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)
Để P nguyên thì
\(2\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow2\sqrt{x}+6-6⋮\sqrt{x}+3\)
=>\(\sqrt{x}+3\inƯ\left(-6\right)\)
=>\(\sqrt{x}+3\in\left\{3;6\right\}\)
=>\(\sqrt{x}\in\left\{0;3\right\}\)
=>\(x\in\left\{0;9\right\}\)
Kết hợp ĐKXĐ, ta được: x=0
Phương trình hoành độ giao điểm:
x2=2(m+1)x-m2-9 \(\Leftrightarrow\) x2-2(m+1)x+m2+9=0.
Để d không cắt (P) thì \(\Delta\)'<0 \(\Leftrightarrow\) (m+1)2-(m2+9)<0 \(\Leftrightarrow\) m<4.
Ta có \(\left(x-\frac{1}{2}\right)+\left(x-\frac{1}{6}\right)+\left(x-\frac{1}{12}\right)+...+\left(x-\frac{1}{90}\right)=1\)
\(\Rightarrow\left(x+x+x+...+x\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)=1\)
\(\Rightarrow9x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)=1\)
\(\Rightarrow9x-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)=1\)
\(\Rightarrow9x-\left(1-\frac{1}{10}\right)=1\)
\(\Rightarrow9x-\frac{9}{10}=1\)
\(\Rightarrow9x=\frac{19}{10}\)
\(\Rightarrow x=\frac{19}{10}\)
\(4x^4+9=0\)
\(4x^4=-9\)
mà \(4x^4\ge0\) với mọi x
=> Vô nghiệm
ta có: x/1.2+x/2.3+x/3.4+.....+x/9.10=9
x-x/2+x/2-x/3+x/3-......+x/9-x/10=9
x-x/10=9
=>x=10