Cho tam giác ABC đều, O bất kì nằm trong tam giác ABC. CMR: OA; OB; OC là độ dài 3 cạnh của một tam giác
- Chỉ cần nói cách vẽ thêm đường
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 đoạn thẳng OA,OB,OC thỏa mãn bất đẳng thức ta chứng minh
OA + OB > OC và OA - OB<OC .....
Trong tam giác AOB có OA + OB > AB => OA + OB > AC (1).
Do O nằm trong tam giác ABC => góc OAC < góc BAC => góc OAC < 60 độ
và góc OCA < góc BCA => góc OCA < 60 độ => góc AOC > 60 độ
trong tam giác AOC góc AOC lớn nhất => AC lớn nhất =>OC < AC (2)
từ (1) và (2) => OA + OB > OC tương tự ta có OB + OC > OA
=> OC > OA - OB hay OA-OB<OC....
sử dụng phương pháp phát triển nâng cao dùng cho bồi dưỡng học sinh giỏi là gắn hệ tọa độ Oxy vào hình vẽ để làm
A B C O
Gọi cạnh của tam giác đều là a .
Kẻ đường cao AH . bằng cách áp dụng ĐL Pi ta go dễ có AH = \(\frac{a\sqrt{3}}{2}\)
Gọi m; n ; p lần lượt là k/c từ O đến BC; AB ; AC
Ta có SABC = SOBC + SOAB + SOAC
= \(\frac{1}{2}\).m.a + \(\frac{1}{2}\).n.a + \(\frac{1}{2}\).p. a = \(\frac{1}{2}\).a.(m+n+p)
Mặt khác, SABC = \(\frac{1}{2}\)AH.BC = \(\frac{1}{2}\). \(\frac{a\sqrt{3}}{2}\).a
=> \(\frac{1}{2}\).a.(m+n+p) = \(\frac{1}{2}\). \(\frac{a\sqrt{3}}{2}\).a => m + n + p = \(\frac{a\sqrt{3}}{2}\)= không đổi
=> ĐPCM