Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 đoạn thẳng OA,OB,OC thỏa mãn bất đẳng thức ta chứng minh
OA + OB > OC và OA - OB<OC .....
Trong tam giác AOB có OA + OB > AB => OA + OB > AC (1).
Do O nằm trong tam giác ABC => góc OAC < góc BAC => góc OAC < 60 độ
và góc OCA < góc BCA => góc OCA < 60 độ => góc AOC > 60 độ
trong tam giác AOC góc AOC lớn nhất => AC lớn nhất =>OC < AC (2)
từ (1) và (2) => OA + OB > OC tương tự ta có OB + OC > OA
=> OC > OA - OB hay OA-OB<OC....
A B C O
Gọi cạnh của tam giác đều là a .
Kẻ đường cao AH . bằng cách áp dụng ĐL Pi ta go dễ có AH = \(\frac{a\sqrt{3}}{2}\)
Gọi m; n ; p lần lượt là k/c từ O đến BC; AB ; AC
Ta có SABC = SOBC + SOAB + SOAC
= \(\frac{1}{2}\).m.a + \(\frac{1}{2}\).n.a + \(\frac{1}{2}\).p. a = \(\frac{1}{2}\).a.(m+n+p)
Mặt khác, SABC = \(\frac{1}{2}\)AH.BC = \(\frac{1}{2}\). \(\frac{a\sqrt{3}}{2}\).a
=> \(\frac{1}{2}\).a.(m+n+p) = \(\frac{1}{2}\). \(\frac{a\sqrt{3}}{2}\).a => m + n + p = \(\frac{a\sqrt{3}}{2}\)= không đổi
=> ĐPCM
a) Tam giác ABC vuông tại A => AB2=BC2-AC2 => AB2=132-52 <=> AB2=169-25=144 => AC=12
b) Giao điểm của 3 đường trung trực trong tam giác cách đều 3 đỉnh của tam giác đó. Mà OA=OB=OC
=> O là giao điểm của 3 đường trung trực trong tam gaics ABC.
c) Tam giác ABC vuông tại A => Giao của 3 đường trung trực trong tam giác ABC nằm trên cạnh BC
Mà OB=OC => Trung điểm của BC trùng với điểm O => AO là trung tuyến của tam giác ABC.
G là trọng tâm => GO=1/3AO=1/3BO=1/3CO. BO=CO=1/2BC =>BO=CO=13/2=6,5 (cm)
=> GO=1/3.6,5\(\approx\)2,1 (cm)