Cho △ABC vuông tại A có: AB = 3cm, AC = 4cm
a, Tính BC. So sánh các góc của △ABC
b, Từ A kẻ AH vuông góc với BC của △ABC. Trên tia BH lấy điểm D sao cho H là trung điểm của đoạn thẳng BD.
Chứng minh △ABD cân tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ap dụng định lý py ta go ta có
\(BC^2=AB^2+AC^2\\
BC^2=9+16=25\\
BC=5\left(cm\right)\)
a: BC=căn 3^2+4^2=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB//CD
=>CD vuông góc CA
c: CM=1/2CA=2cm
Xét ΔCBD có
CM,BN là trung tuyến
CM cắt BN tại H
=>H là trọng tâm
=>CH=2/3CM=2/3*2=4/3(cm)
d: Xét ΔDBC có
DKlà trung tuyến
H là trọng tâm
=>D,K,H thẳng hàng
a).
Áp dụng đl pytago vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2=3^2+4^2\Rightarrow BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
So sánh góc:
\(\widehat{C}< \widehat{B}< \widehat{A}\)
b) . Xét 2 t/g vuông : ABC và ADC có :
\(\widehat{CAB}=\widehat{CAD}=90^o\)
AC cạnh chung
\(AB=AD\left(theođề\right)\)
do đó : t/g ABC = t/g ADC ( cạnh góc vuông - cạnh góc vuông).
c) . Vì t/g ABC = t/g ADC
=> \(\widehat{BCA}=\widehat{DCA}\left(1\right)\)
Vì AM // BC
= > \(\widehat{CAM}=\widehat{BCA}\left(soletrong\right)\left(2\right)\)
Từ (1) và (2)
=> \(\widehat{DCA}=\widehat{CAM}\) ( 2 góc đều = góc BCA ) .
=> tam giác AMC cân ( 2 góc đáy bằng nhau).
d) . Từ đề ta suy ra :
G là trực tâm của t/g CBD
=> \(CG=\dfrac{2}{3}AC=\dfrac{2}{3}.4=2,67\left(cm\right)\)
a) Xét tam giác ABC có:
BC>AC>AB (vì 5>4>3)
Suy ra: Góc A>góc B>góc C (quan hệ giữa góc và cạnh đối diện)
b) Xét tam giác BCD có:
A là trung điểm của BD (gt)
I là trung điểm của BC(gt)
A cắt I tại M
Suy ra M là trọng tâm của tâm giác CBD (Tính chất)
a) Xét tam giác ABC có:
BC>AC>AB (vì 5>4>3)
Suy ra: Góc A>góc B>góc C (quan hệ giữa góc và cạnh đối diện)
b) Xét tam giác BCD có:
A là trung điểm của BD (gt)
I là trung điểm của BC(gt)
A cắt I tại M
Suy ra M là trọng tâm của tâm giác CBD (Tính chất)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Xét △ABC vuông tại A có :
AB2+AC2=BC2(định lý py-ta-go)
⇒ AC2=BC2-AB2
⇒ AC2=102-62
⇒ AC2=100-36
⇒ AC2=64
⇒ AC=8
Vậy AC=8cm
b)
Xét △ABC và △ADC có :
AC chung
AB=AD(gt)
∠BAC=∠DAC(=90)
⇒△ABC=△ADC(c-g-c)
⇒BC=DC(2 cạnh tương ứng)
Xét △BCD có BC=DC(cmt)
⇒△BCD cân tại C (định lý tam giác cân)
c)
Xét △BCD cân tại C có
K là trung điểm của BC (gt)
A là trung điểm của BD (gt)
⇒DK , AC là đường trung tuyến của △BCD
mà DK cắt AC tại M nên M là trọng tâm của △BCD
⇒CM=2/3AC
⇒CM=2/3.8
⇒CM=16/3cm
d)
Xét △AMQ và △CMQ có
MQ chung
MA=MC(gt)
∠AMQ=∠CMQ(=90)
⇒△AMQ=△CMQ(C-G-C)
⇒∠MAQ=∠C2(2 góc tương ứng )
QA=QC( 2 cạnh tương ứng)
Vì △ABC=△ADC(theo b)
⇒∠C1=∠C2(2 góc tương ứng)
⇒∠C1=∠MAQ
mà 2 góc này có vị trí SLT
⇒AQ//BC
⇒∠QAD=∠CBA( đồng vị )
mà∠CBA=∠CDA(△BDC cân tại C)
⇒∠QAD=∠QDA
⇒△ADQ cân tại Q
⇒QA=QD
mà QA=QC(cmt)
⇒DQ=CQ
⇒BQ là đường trung tuyến của△BCD
⇒B,M,D thẳng hàng
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
Xét ΔABC có AB<AC<BC
mà \(\widehat{C};\widehat{B};\widehat{A}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{CBA}< \widehat{BAC}\)
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A