Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ap dụng định lý py ta go ta có
\(BC^2=AB^2+AC^2\\
BC^2=9+16=25\\
BC=5\left(cm\right)\)
a).
Áp dụng đl pytago vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2=3^2+4^2\Rightarrow BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
So sánh góc:
\(\widehat{C}< \widehat{B}< \widehat{A}\)
b) . Xét 2 t/g vuông : ABC và ADC có :
\(\widehat{CAB}=\widehat{CAD}=90^o\)
AC cạnh chung
\(AB=AD\left(theođề\right)\)
do đó : t/g ABC = t/g ADC ( cạnh góc vuông - cạnh góc vuông).
c) . Vì t/g ABC = t/g ADC
=> \(\widehat{BCA}=\widehat{DCA}\left(1\right)\)
Vì AM // BC
= > \(\widehat{CAM}=\widehat{BCA}\left(soletrong\right)\left(2\right)\)
Từ (1) và (2)
=> \(\widehat{DCA}=\widehat{CAM}\) ( 2 góc đều = góc BCA ) .
=> tam giác AMC cân ( 2 góc đáy bằng nhau).
d) . Từ đề ta suy ra :
G là trực tâm của t/g CBD
=> \(CG=\dfrac{2}{3}AC=\dfrac{2}{3}.4=2,67\left(cm\right)\)
a: BC=căn 3^2+4^2=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB//CD
=>CD vuông góc CA
c: CM=1/2CA=2cm
Xét ΔCBD có
CM,BN là trung tuyến
CM cắt BN tại H
=>H là trọng tâm
=>CH=2/3CM=2/3*2=4/3(cm)
d: Xét ΔDBC có
DKlà trung tuyến
H là trọng tâm
=>D,K,H thẳng hàng
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Xét tam giác ABC có:
BC>AC>AB (vì 5>4>3)
Suy ra: Góc A>góc B>góc C (quan hệ giữa góc và cạnh đối diện)
b) Xét tam giác BCD có:
A là trung điểm của BD (gt)
I là trung điểm của BC(gt)
A cắt I tại M
Suy ra M là trọng tâm của tâm giác CBD (Tính chất)
a) Xét tam giác ABC có:
BC>AC>AB (vì 5>4>3)
Suy ra: Góc A>góc B>góc C (quan hệ giữa góc và cạnh đối diện)
b) Xét tam giác BCD có:
A là trung điểm của BD (gt)
I là trung điểm của BC(gt)
A cắt I tại M
Suy ra M là trọng tâm của tâm giác CBD (Tính chất)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
Xét ΔABC có AB<AC<BC
mà \(\widehat{C};\widehat{B};\widehat{A}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{CBA}< \widehat{BAC}\)
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A