K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

Vì \(\tan MAB=\frac{MB}{AB}=\frac{1}{2}\Rightarrow\widehat{MAB}=26,5°\)Tương tự có \(\widehat{NAD}=26,5°\)

\(\Rightarrow\widehat{MAN}=37°\Rightarrow\cos MAN=\cos37\approx0,79\)

a: Hình thang ABCD có 

M là trung điểm của AD

N là trung điểm của BC

Do đó: MN là đường trung bình của hình thang ABCD

Suy ra: MN//BA//CD

Xét ΔAMI có \(\widehat{MAI}=\widehat{MIA}\left(=\widehat{IAB}\right)\)

nên ΔAMI cân tại M

Xét ΔBKN có \(\widehat{NKB}=\widehat{NBK}\left(=\widehat{ABK}\right)\)

nên ΔBKN cân tại N

b: Xét ΔAID có 

IM là đường trung tuyến ứng với cạnh AD

\(IM=\dfrac{AD}{2}\left(=AM\right)\)

nên ΔIAD vuông tại I

Xét ΔBKC có 

KN là đường trung tuyến ứng với cạnh BC

\(KN=\dfrac{BC}{2}\left(=BN\right)\)

nên ΔBKC vuông tại K

a) Vì ABCD là hình thang

=> BAD + ADC = 180° ( trong cùng phía )

=> BAD = 180° - 60° = 120° 

Vì DB là phân giác ADC 

=> ADB = CDB = \(\frac{120°}{2}=60°\)

Vì AB//CD ( ABCD là hình thang )

=> ABD = BDC = 60° ( so le trong )

Mà ABD + DBC = 120° 

=> DBC = 120° - 60° = 60° 

b) Vì ABCD là hình thang cân 

=> BAD = ABC = 120° 

ADC = BCD = 60° 

=> ADB = ABD = 60°

=> ∆ADB cân tại A

=> AD = AB = x

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0