Cho tam giac ABC vuông tại A trên cạnh BC lấy điểm M sao cho BM=Ba. Vẽ Mx vuông với BC, Mx cắt AC tại S, cắt AB tại E.Chứng minh
a)BS là phân giác của góc B
b)chứng minh SE=SC
c)chứng minh AM//EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a: AB<AC
=>góc C<góc B
b: Xét ΔBAM vuông tại A và ΔBEM vuông tại E có
BM chung
BA=BE
=>ΔBAM=ΔBEM
c: Xét ΔBNC có
NE,CA là đường cao
NE cắt CA tại M
=>M là trực tâm
=>BM vuông góc CN
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc ABD=góc EBD
=>BD là phân giác của góc ABE
c: Xét ΔBEM vuông tại E và ΔBAC vuôg tại A có
BE=BA
góc EBM chung
=>ΔBEM=ΔBAC
=>BM=BC
\(\text{a)Xét }\Delta ABC\text{ vuông tại A có:}\)
\(BC^2=AB+AC^2\left(\text{định lí Py ta go}\right)\)
\(\Rightarrow BC^2=5^2+7^2=25+49=74\left(cm\right)\)
\(\Rightarrow BC=\sqrt{74}\left(cm\right)\)
\(\text{b)Xét }\Delta ABE\text{ và }\Delta DBE\text{ có:}\)
\(\widehat{BAE}=\widehat{BDE}=90^0\left(gt\right)\)
\(BE\text{ chung}\)
\(BA=BD\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta DBE\left(c-g-c\right)\)
\(\text{c)Xét }\Delta AEF\text{ và }\Delta DEC\text{ có:}\)
\(\widehat{AEF}=\widehat{DEC}\left(\text{đối đỉnh}\right)\)
\(\widehat{FAE}=\widehat{CDE}=90^0\left(gt\right)\)
\(AE=DE\left(\Delta ABE=\Delta DBE\right)\)
\(\Rightarrow\Delta AEF=\Delta DEC\left(g-c-g\right)\)
\(\Rightarrow EF=EC\left(\text{hai cạnh tương ứng}\right)\)
\(\text{d)Gọi O là giao điểm của BE và AD}\)
\(\text{Xét }\Delta ABO\text{ và }\Delta DBO\text{ có:}\)
\(BO\text{ chung}\)
\(BA=BD\left(gt\right)\)
\(\widehat{ABO}=\widehat{DBO}\left(\Delta ABE=\Delta DBE\right)\)
\(\Rightarrow\Delta ABO=\Delta DBO\left(c-g-c\right)\)
\(\Rightarrow\widehat{AOB}=\widehat{DOB}\left(\text{hai góc tương ứng}\right)\)
\(\text{Mà chúng kề bù}\)
\(\Rightarrow\widehat{AOB}=\widehat{DOB}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow BE\perp AD\)
\(\text{Mà AO=DO}\left(\Delta AOB=\Delta DOB\right)\)
\(\Rightarrow BE\text{ là đường trung trực của đoạn thẳng AD}\)
cảm ơn bạn nghe thank you mà làm thế này đúng ko bạn:
a) Vì tam giác BAC vuông tại A
=> AB^2 + AC^2 = BC^2 ( đl pytago )
=> BC^2 = 5^2 + 7^2 = 74
=> BC = căn bậc 2 của 74
b)
Xét tam giác ABE; tam giác DBE có :
AB = DB ( gt)
góc ABE = góc DBE ( gt)
BE chung
=> tam giác ABE = tam giác DBE (c.g.c) - đpcm
c)
Vì tam giác ABE = tam giác DBE (câu b)
=> AE = DE
Xét tg AEF ⊥ tại A; tg DEC ⊥ tại D:
AE = DE (c/m trên)
g AEF = g DEC (đối đỉnh)
=> tg AEF = tg DEC (cgv - gn) - đpcm
=> EF = EC
d)
Do tam giác AEF = tam giác DEC (câu c)
=> AE = DE
=> E ∈ đường trung trực của AD (1)
Lại do AB = BD (gt)
=> B ∈ đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD. - đpcm
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
A)Xét tam giác ABD và EBD
DB chung
\(\widehat{EBD}=\widehat{DBA}\)
AB=AE
=> tam giác ABD = tam giác EBD
B)DE=AD
DE\(⊥\)BC
Xét tam giác vuông DEC và DAM
\(\widehat{CDE}=\widehat{MDA}\)
AD=DE
=> tam giác ADM = tam giác EDC => CE =AM
C) MÌNH KO BIẾT
giúp mk vs các bn